Cargando…
Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties
Computer studies are often used to study mechanisms of cardiac arrhythmias, including atrial fibrillation (AF). A crucial component in these studies is the electrophysiological model that describes the membrane potential of myocytes. The models vary from detailed, describing numerous ion channels, t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975409/ https://www.ncbi.nlm.nih.gov/pubmed/27494252 http://dx.doi.org/10.1371/journal.pcbi.1005060 |
_version_ | 1782446722136408064 |
---|---|
author | Lombardo, Daniel M. Fenton, Flavio H. Narayan, Sanjiv M. Rappel, Wouter-Jan |
author_facet | Lombardo, Daniel M. Fenton, Flavio H. Narayan, Sanjiv M. Rappel, Wouter-Jan |
author_sort | Lombardo, Daniel M. |
collection | PubMed |
description | Computer studies are often used to study mechanisms of cardiac arrhythmias, including atrial fibrillation (AF). A crucial component in these studies is the electrophysiological model that describes the membrane potential of myocytes. The models vary from detailed, describing numerous ion channels, to simplified, grouping ionic channels into a minimal set of variables. The parameters of these models, however, are determined across different experiments in varied species. Furthermore, a single set of parameters may not describe variations across patients, and models have rarely been shown to recapitulate critical features of AF in a given patient. In this study we develop physiologically accurate computational human atrial models by fitting parameters of a detailed and of a simplified model to clinical data for five patients undergoing ablation therapy. Parameters were simultaneously fitted to action potential (AP) morphology, action potential duration (APD) restitution and conduction velocity (CV) restitution curves in these patients. For both models, our fitting procedure generated parameter sets that accurately reproduced clinical data, but differed markedly from published sets and between patients, emphasizing the need for patient-specific adjustment. Both models produced two-dimensional spiral wave dynamics for that were similar for each patient. These results show that simplified, computationally efficient models are an attractive choice for simulations of human atrial electrophysiology in spatially extended domains. This study motivates the development and validation of patient-specific model-based mechanistic studies to target therapy. |
format | Online Article Text |
id | pubmed-4975409 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49754092016-08-25 Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties Lombardo, Daniel M. Fenton, Flavio H. Narayan, Sanjiv M. Rappel, Wouter-Jan PLoS Comput Biol Research Article Computer studies are often used to study mechanisms of cardiac arrhythmias, including atrial fibrillation (AF). A crucial component in these studies is the electrophysiological model that describes the membrane potential of myocytes. The models vary from detailed, describing numerous ion channels, to simplified, grouping ionic channels into a minimal set of variables. The parameters of these models, however, are determined across different experiments in varied species. Furthermore, a single set of parameters may not describe variations across patients, and models have rarely been shown to recapitulate critical features of AF in a given patient. In this study we develop physiologically accurate computational human atrial models by fitting parameters of a detailed and of a simplified model to clinical data for five patients undergoing ablation therapy. Parameters were simultaneously fitted to action potential (AP) morphology, action potential duration (APD) restitution and conduction velocity (CV) restitution curves in these patients. For both models, our fitting procedure generated parameter sets that accurately reproduced clinical data, but differed markedly from published sets and between patients, emphasizing the need for patient-specific adjustment. Both models produced two-dimensional spiral wave dynamics for that were similar for each patient. These results show that simplified, computationally efficient models are an attractive choice for simulations of human atrial electrophysiology in spatially extended domains. This study motivates the development and validation of patient-specific model-based mechanistic studies to target therapy. Public Library of Science 2016-08-05 /pmc/articles/PMC4975409/ /pubmed/27494252 http://dx.doi.org/10.1371/journal.pcbi.1005060 Text en © 2016 Lombardo et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Lombardo, Daniel M. Fenton, Flavio H. Narayan, Sanjiv M. Rappel, Wouter-Jan Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties |
title | Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties |
title_full | Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties |
title_fullStr | Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties |
title_full_unstemmed | Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties |
title_short | Comparison of Detailed and Simplified Models of Human Atrial Myocytes to Recapitulate Patient Specific Properties |
title_sort | comparison of detailed and simplified models of human atrial myocytes to recapitulate patient specific properties |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975409/ https://www.ncbi.nlm.nih.gov/pubmed/27494252 http://dx.doi.org/10.1371/journal.pcbi.1005060 |
work_keys_str_mv | AT lombardodanielm comparisonofdetailedandsimplifiedmodelsofhumanatrialmyocytestorecapitulatepatientspecificproperties AT fentonflavioh comparisonofdetailedandsimplifiedmodelsofhumanatrialmyocytestorecapitulatepatientspecificproperties AT narayansanjivm comparisonofdetailedandsimplifiedmodelsofhumanatrialmyocytestorecapitulatepatientspecificproperties AT rappelwouterjan comparisonofdetailedandsimplifiedmodelsofhumanatrialmyocytestorecapitulatepatientspecificproperties |