Cargando…

Enhanced exercise and regenerative capacity in a mouse model that violates size constraints of oxidative muscle fibres

A central tenet of skeletal muscle biology is the existence of an inverse relationship between the oxidative fibre capacity and its size. However, robustness of this relationship is unknown. We show that superimposition of Estrogen-related receptor gamma (Errγ) on the myostatin (Mtn) mouse null back...

Descripción completa

Detalles Bibliográficos
Autores principales: Omairi, Saleh, Matsakas, Antonios, Degens, Hans, Kretz, Oliver, Hansson, Kenth-Arne, Solbrå, Andreas Våvang, Bruusgaard, Jo C, Joch, Barbara, Sartori, Roberta, Giallourou, Natasa, Mitchell, Robert, Collins-Hooper, Henry, Foster, Keith, Pasternack, Arja, Ritvos, Olli, Sandri, Marco, Narkar, Vihang, Swann, Jonathan R, Huber, Tobias B, Patel, Ketan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975572/
https://www.ncbi.nlm.nih.gov/pubmed/27494364
http://dx.doi.org/10.7554/eLife.16940
Descripción
Sumario:A central tenet of skeletal muscle biology is the existence of an inverse relationship between the oxidative fibre capacity and its size. However, robustness of this relationship is unknown. We show that superimposition of Estrogen-related receptor gamma (Errγ) on the myostatin (Mtn) mouse null background (Mtn(-/-)/Errγ(Tg/+)) results in hypertrophic muscle with a high oxidative capacity thus violating the inverse relationship between fibre size and oxidative capacity. We also examined the canonical view that oxidative muscle phenotype positively correlate with Satellite cell number, the resident stem cells of skeletal muscle. Surprisingly, hypertrophic fibres from Mtn(-/-)/Errγ(Tg/+) mouse showed satellite cell deficit which unexpectedly did not affect muscle regeneration. These observations 1) challenge the concept of a constraint between fibre size and oxidative capacity and 2) indicate the important role of the microcirculation in the regenerative capacity of a muscle even when satellite cell numbers are reduced. DOI: http://dx.doi.org/10.7554/eLife.16940.001