Cargando…

Longitudinal analysis of the strengths and difficulties questionnaire scores of the Millennium Cohort Study children in England using M‐quantile random‐effects regression

Multilevel modelling is a popular approach for longitudinal data analysis. Statistical models conventionally target a parameter at the centre of a distribution. However, when the distribution of the data is asymmetric, modelling other location parameters, e.g. percentiles, may be more informative. W...

Descripción completa

Detalles Bibliográficos
Autores principales: Tzavidis, Nikos, Salvati, Nicola, Schmid, Timo, Flouri, Eirini, Midouhas, Emily
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975608/
https://www.ncbi.nlm.nih.gov/pubmed/27546997
http://dx.doi.org/10.1111/rssa.12126
_version_ 1782446751638093824
author Tzavidis, Nikos
Salvati, Nicola
Schmid, Timo
Flouri, Eirini
Midouhas, Emily
author_facet Tzavidis, Nikos
Salvati, Nicola
Schmid, Timo
Flouri, Eirini
Midouhas, Emily
author_sort Tzavidis, Nikos
collection PubMed
description Multilevel modelling is a popular approach for longitudinal data analysis. Statistical models conventionally target a parameter at the centre of a distribution. However, when the distribution of the data is asymmetric, modelling other location parameters, e.g. percentiles, may be more informative. We present a new approach, M‐quantile random‐effects regression, for modelling multilevel data. The proposed method is used for modelling location parameters of the distribution of the strengths and difficulties questionnaire scores of children in England who participate in the Millennium Cohort Study. Quantile mixed models are also considered. The analyses offer insights to child psychologists about the differential effects of risk factors on children's outcomes.
format Online
Article
Text
id pubmed-4975608
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-49756082016-08-17 Longitudinal analysis of the strengths and difficulties questionnaire scores of the Millennium Cohort Study children in England using M‐quantile random‐effects regression Tzavidis, Nikos Salvati, Nicola Schmid, Timo Flouri, Eirini Midouhas, Emily J R Stat Soc Ser A Stat Soc Original Articles Multilevel modelling is a popular approach for longitudinal data analysis. Statistical models conventionally target a parameter at the centre of a distribution. However, when the distribution of the data is asymmetric, modelling other location parameters, e.g. percentiles, may be more informative. We present a new approach, M‐quantile random‐effects regression, for modelling multilevel data. The proposed method is used for modelling location parameters of the distribution of the strengths and difficulties questionnaire scores of children in England who participate in the Millennium Cohort Study. Quantile mixed models are also considered. The analyses offer insights to child psychologists about the differential effects of risk factors on children's outcomes. John Wiley and Sons Inc. 2016-02 2015-07-01 /pmc/articles/PMC4975608/ /pubmed/27546997 http://dx.doi.org/10.1111/rssa.12126 Text en © 2015 The Authors Journal of the Royal Statistical Society: Series A (Statistics in Society) Published by John Wiley & Sons Ltd on behalf of the Royal Statistical Society. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Tzavidis, Nikos
Salvati, Nicola
Schmid, Timo
Flouri, Eirini
Midouhas, Emily
Longitudinal analysis of the strengths and difficulties questionnaire scores of the Millennium Cohort Study children in England using M‐quantile random‐effects regression
title Longitudinal analysis of the strengths and difficulties questionnaire scores of the Millennium Cohort Study children in England using M‐quantile random‐effects regression
title_full Longitudinal analysis of the strengths and difficulties questionnaire scores of the Millennium Cohort Study children in England using M‐quantile random‐effects regression
title_fullStr Longitudinal analysis of the strengths and difficulties questionnaire scores of the Millennium Cohort Study children in England using M‐quantile random‐effects regression
title_full_unstemmed Longitudinal analysis of the strengths and difficulties questionnaire scores of the Millennium Cohort Study children in England using M‐quantile random‐effects regression
title_short Longitudinal analysis of the strengths and difficulties questionnaire scores of the Millennium Cohort Study children in England using M‐quantile random‐effects regression
title_sort longitudinal analysis of the strengths and difficulties questionnaire scores of the millennium cohort study children in england using m‐quantile random‐effects regression
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975608/
https://www.ncbi.nlm.nih.gov/pubmed/27546997
http://dx.doi.org/10.1111/rssa.12126
work_keys_str_mv AT tzavidisnikos longitudinalanalysisofthestrengthsanddifficultiesquestionnairescoresofthemillenniumcohortstudychildreninenglandusingmquantilerandomeffectsregression
AT salvatinicola longitudinalanalysisofthestrengthsanddifficultiesquestionnairescoresofthemillenniumcohortstudychildreninenglandusingmquantilerandomeffectsregression
AT schmidtimo longitudinalanalysisofthestrengthsanddifficultiesquestionnairescoresofthemillenniumcohortstudychildreninenglandusingmquantilerandomeffectsregression
AT flourieirini longitudinalanalysisofthestrengthsanddifficultiesquestionnairescoresofthemillenniumcohortstudychildreninenglandusingmquantilerandomeffectsregression
AT midouhasemily longitudinalanalysisofthestrengthsanddifficultiesquestionnairescoresofthemillenniumcohortstudychildreninenglandusingmquantilerandomeffectsregression