Cargando…

Quantum electromechanics on silicon nitride nanomembranes

Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom—mechanical, optical and microwave—would enable a quantum interconnect between microwave and optical quant...

Descripción completa

Detalles Bibliográficos
Autores principales: Fink, J. M., Kalaee, M., Pitanti, A., Norte, R., Heinzle, L., Davanço, M., Srinivasan, K., Painter, O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4976205/
https://www.ncbi.nlm.nih.gov/pubmed/27484751
http://dx.doi.org/10.1038/ncomms12396
_version_ 1782446831064580096
author Fink, J. M.
Kalaee, M.
Pitanti, A.
Norte, R.
Heinzle, L.
Davanço, M.
Srinivasan, K.
Painter, O.
author_facet Fink, J. M.
Kalaee, M.
Pitanti, A.
Norte, R.
Heinzle, L.
Davanço, M.
Srinivasan, K.
Painter, O.
author_sort Fink, J. M.
collection PubMed
description Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom—mechanical, optical and microwave—would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments.
format Online
Article
Text
id pubmed-4976205
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49762052016-08-19 Quantum electromechanics on silicon nitride nanomembranes Fink, J. M. Kalaee, M. Pitanti, A. Norte, R. Heinzle, L. Davanço, M. Srinivasan, K. Painter, O. Nat Commun Article Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom—mechanical, optical and microwave—would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments. Nature Publishing Group 2016-08-03 /pmc/articles/PMC4976205/ /pubmed/27484751 http://dx.doi.org/10.1038/ncomms12396 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Fink, J. M.
Kalaee, M.
Pitanti, A.
Norte, R.
Heinzle, L.
Davanço, M.
Srinivasan, K.
Painter, O.
Quantum electromechanics on silicon nitride nanomembranes
title Quantum electromechanics on silicon nitride nanomembranes
title_full Quantum electromechanics on silicon nitride nanomembranes
title_fullStr Quantum electromechanics on silicon nitride nanomembranes
title_full_unstemmed Quantum electromechanics on silicon nitride nanomembranes
title_short Quantum electromechanics on silicon nitride nanomembranes
title_sort quantum electromechanics on silicon nitride nanomembranes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4976205/
https://www.ncbi.nlm.nih.gov/pubmed/27484751
http://dx.doi.org/10.1038/ncomms12396
work_keys_str_mv AT finkjm quantumelectromechanicsonsiliconnitridenanomembranes
AT kalaeem quantumelectromechanicsonsiliconnitridenanomembranes
AT pitantia quantumelectromechanicsonsiliconnitridenanomembranes
AT norter quantumelectromechanicsonsiliconnitridenanomembranes
AT heinzlel quantumelectromechanicsonsiliconnitridenanomembranes
AT davancom quantumelectromechanicsonsiliconnitridenanomembranes
AT srinivasank quantumelectromechanicsonsiliconnitridenanomembranes
AT paintero quantumelectromechanicsonsiliconnitridenanomembranes