Cargando…

Neurophysiological hyperresponsivity to sensory input in autism spectrum disorders

BACKGROUND: Atypical sensory processing is a common clinical observation in autism spectrum disorder (ASD). Neural hyperexcitability has been suggested as the cause for sensory hypersensitivity, a frequently reported clinical observation in ASD. We examined visual evoked responses to parametric incr...

Descripción completa

Detalles Bibliográficos
Autores principales: Takarae, Yukari, Sablich, Savanna R., White, Stormi P., Sweeney, John A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4976475/
https://www.ncbi.nlm.nih.gov/pubmed/27504143
http://dx.doi.org/10.1186/s11689-016-9162-9
Descripción
Sumario:BACKGROUND: Atypical sensory processing is a common clinical observation in autism spectrum disorder (ASD). Neural hyperexcitability has been suggested as the cause for sensory hypersensitivity, a frequently reported clinical observation in ASD. We examined visual evoked responses to parametric increases in stimulus contrast in order to model neural responsivity of sensory systems in ASD. METHODS: Thirteen high-functioning individuals with ASD and 12 typically developing (TD) individuals completed a steady-state visual evoked potential study. Stimuli were vertical circular gratings oscillating at 3.76 Hz at varying contrasts (5, 10, 20,…, 90 % contrast, 10 levels). The average spectral power at the stimulus oscillation frequency was calculated for each contrast level. RESULTS: The magnitude of evoked sensory responses increased at a significantly greater rate and resulted in disproportionately elevated activation with higher contrasts in the ASD group. Approximately 45 % of ASD participants had rates of response increases greater than any TD participant. This alteration was highly associated with parental reports of these participants’ sensory difficulties. CONCLUSIONS: Greater increases in visual responses over contrast manipulation suggest heightened excitability in the sensory cortex in ASD participants. Heightened neural excitability was observed in a substantial portion but not all of the ASD participants. This pattern suggests that individuals with higher excitability may constitute a neurobiologically distinct subgroup requiring individualized treatment interventions.