Cargando…
Structural mechanism of ligand activation in human calcium-sensing receptor
Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca(2+) homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977154/ https://www.ncbi.nlm.nih.gov/pubmed/27434672 http://dx.doi.org/10.7554/eLife.13662 |
_version_ | 1782446980130144256 |
---|---|
author | Geng, Yong Mosyak, Lidia Kurinov, Igor Zuo, Hao Sturchler, Emmanuel Cheng, Tat Cheung Subramanyam, Prakash Brown, Alice P Brennan, Sarah C Mun, Hee-chang Bush, Martin Chen, Yan Nguyen, Trang X Cao, Baohua Chang, Donald D Quick, Matthias Conigrave, Arthur D Colecraft, Henry M McDonald, Patricia Fan, Qing R |
author_facet | Geng, Yong Mosyak, Lidia Kurinov, Igor Zuo, Hao Sturchler, Emmanuel Cheng, Tat Cheung Subramanyam, Prakash Brown, Alice P Brennan, Sarah C Mun, Hee-chang Bush, Martin Chen, Yan Nguyen, Trang X Cao, Baohua Chang, Donald D Quick, Matthias Conigrave, Arthur D Colecraft, Henry M McDonald, Patricia Fan, Qing R |
author_sort | Geng, Yong |
collection | PubMed |
description | Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca(2+) homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca(2+) and PO(4)(3-) ions. Both ions are crucial for structural integrity of the receptor. While Ca(2+) ions stabilize the active state, PO(4)(3-) ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits. DOI: http://dx.doi.org/10.7554/eLife.13662.001 |
format | Online Article Text |
id | pubmed-4977154 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-49771542016-08-10 Structural mechanism of ligand activation in human calcium-sensing receptor Geng, Yong Mosyak, Lidia Kurinov, Igor Zuo, Hao Sturchler, Emmanuel Cheng, Tat Cheung Subramanyam, Prakash Brown, Alice P Brennan, Sarah C Mun, Hee-chang Bush, Martin Chen, Yan Nguyen, Trang X Cao, Baohua Chang, Donald D Quick, Matthias Conigrave, Arthur D Colecraft, Henry M McDonald, Patricia Fan, Qing R eLife Biophysics and Structural Biology Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca(2+) homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca(2+) and PO(4)(3-) ions. Both ions are crucial for structural integrity of the receptor. While Ca(2+) ions stabilize the active state, PO(4)(3-) ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits. DOI: http://dx.doi.org/10.7554/eLife.13662.001 eLife Sciences Publications, Ltd 2016-07-19 /pmc/articles/PMC4977154/ /pubmed/27434672 http://dx.doi.org/10.7554/eLife.13662 Text en © 2016, Geng et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Biophysics and Structural Biology Geng, Yong Mosyak, Lidia Kurinov, Igor Zuo, Hao Sturchler, Emmanuel Cheng, Tat Cheung Subramanyam, Prakash Brown, Alice P Brennan, Sarah C Mun, Hee-chang Bush, Martin Chen, Yan Nguyen, Trang X Cao, Baohua Chang, Donald D Quick, Matthias Conigrave, Arthur D Colecraft, Henry M McDonald, Patricia Fan, Qing R Structural mechanism of ligand activation in human calcium-sensing receptor |
title | Structural mechanism of ligand activation in human calcium-sensing receptor |
title_full | Structural mechanism of ligand activation in human calcium-sensing receptor |
title_fullStr | Structural mechanism of ligand activation in human calcium-sensing receptor |
title_full_unstemmed | Structural mechanism of ligand activation in human calcium-sensing receptor |
title_short | Structural mechanism of ligand activation in human calcium-sensing receptor |
title_sort | structural mechanism of ligand activation in human calcium-sensing receptor |
topic | Biophysics and Structural Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977154/ https://www.ncbi.nlm.nih.gov/pubmed/27434672 http://dx.doi.org/10.7554/eLife.13662 |
work_keys_str_mv | AT gengyong structuralmechanismofligandactivationinhumancalciumsensingreceptor AT mosyaklidia structuralmechanismofligandactivationinhumancalciumsensingreceptor AT kurinovigor structuralmechanismofligandactivationinhumancalciumsensingreceptor AT zuohao structuralmechanismofligandactivationinhumancalciumsensingreceptor AT sturchleremmanuel structuralmechanismofligandactivationinhumancalciumsensingreceptor AT chengtatcheung structuralmechanismofligandactivationinhumancalciumsensingreceptor AT subramanyamprakash structuralmechanismofligandactivationinhumancalciumsensingreceptor AT brownalicep structuralmechanismofligandactivationinhumancalciumsensingreceptor AT brennansarahc structuralmechanismofligandactivationinhumancalciumsensingreceptor AT munheechang structuralmechanismofligandactivationinhumancalciumsensingreceptor AT bushmartin structuralmechanismofligandactivationinhumancalciumsensingreceptor AT chenyan structuralmechanismofligandactivationinhumancalciumsensingreceptor AT nguyentrangx structuralmechanismofligandactivationinhumancalciumsensingreceptor AT caobaohua structuralmechanismofligandactivationinhumancalciumsensingreceptor AT changdonaldd structuralmechanismofligandactivationinhumancalciumsensingreceptor AT quickmatthias structuralmechanismofligandactivationinhumancalciumsensingreceptor AT conigravearthurd structuralmechanismofligandactivationinhumancalciumsensingreceptor AT colecrafthenrym structuralmechanismofligandactivationinhumancalciumsensingreceptor AT mcdonaldpatricia structuralmechanismofligandactivationinhumancalciumsensingreceptor AT fanqingr structuralmechanismofligandactivationinhumancalciumsensingreceptor |