Cargando…

The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease

RNA functions through the dynamic formation of complexes with RNA-binding proteins (RBPs) in all clades of life. We determined the RBP repertoire of beating cardiomyocytic HL-1 cells by jointly employing two in vivo proteomic methods, mRNA interactome capture and RBDmap. Together, these yielded 1,14...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Yalin, Castello, Alfredo, Fischer, Bernd, Leicht, Stefan, Föehr, Sophia, Frese, Christian K., Ragan, Chikako, Kurscheid, Sebastian, Pagler, Eloisa, Yang, Hao, Krijgsveld, Jeroen, Hentze, Matthias W., Preiss, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977271/
https://www.ncbi.nlm.nih.gov/pubmed/27452465
http://dx.doi.org/10.1016/j.celrep.2016.06.084
_version_ 1782446995065012224
author Liao, Yalin
Castello, Alfredo
Fischer, Bernd
Leicht, Stefan
Föehr, Sophia
Frese, Christian K.
Ragan, Chikako
Kurscheid, Sebastian
Pagler, Eloisa
Yang, Hao
Krijgsveld, Jeroen
Hentze, Matthias W.
Preiss, Thomas
author_facet Liao, Yalin
Castello, Alfredo
Fischer, Bernd
Leicht, Stefan
Föehr, Sophia
Frese, Christian K.
Ragan, Chikako
Kurscheid, Sebastian
Pagler, Eloisa
Yang, Hao
Krijgsveld, Jeroen
Hentze, Matthias W.
Preiss, Thomas
author_sort Liao, Yalin
collection PubMed
description RNA functions through the dynamic formation of complexes with RNA-binding proteins (RBPs) in all clades of life. We determined the RBP repertoire of beating cardiomyocytic HL-1 cells by jointly employing two in vivo proteomic methods, mRNA interactome capture and RBDmap. Together, these yielded 1,148 RBPs, 391 of which are shared with all other available mammalian RBP repertoires, while 393 are thus far unique to cardiomyocytes. RBDmap further identified 568 regions of RNA contact within 368 RBPs. The cardiomyocyte mRNA interactome composition reflects their unique biology. Proteins with roles in cardiovascular physiology or disease, mitochondrial function, and intermediary metabolism are all highly represented. Notably, we identified 73 metabolic enzymes as RBPs. RNA-enzyme contacts frequently involve Rossmann fold domains with examples in evidence of both, mutual exclusivity of, or compatibility between RNA binding and enzymatic function. Our findings raise the prospect of previously hidden RNA-mediated regulatory interactions among cardiomyocyte gene expression, physiology, and metabolism.
format Online
Article
Text
id pubmed-4977271
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-49772712016-08-17 The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease Liao, Yalin Castello, Alfredo Fischer, Bernd Leicht, Stefan Föehr, Sophia Frese, Christian K. Ragan, Chikako Kurscheid, Sebastian Pagler, Eloisa Yang, Hao Krijgsveld, Jeroen Hentze, Matthias W. Preiss, Thomas Cell Rep Resource RNA functions through the dynamic formation of complexes with RNA-binding proteins (RBPs) in all clades of life. We determined the RBP repertoire of beating cardiomyocytic HL-1 cells by jointly employing two in vivo proteomic methods, mRNA interactome capture and RBDmap. Together, these yielded 1,148 RBPs, 391 of which are shared with all other available mammalian RBP repertoires, while 393 are thus far unique to cardiomyocytes. RBDmap further identified 568 regions of RNA contact within 368 RBPs. The cardiomyocyte mRNA interactome composition reflects their unique biology. Proteins with roles in cardiovascular physiology or disease, mitochondrial function, and intermediary metabolism are all highly represented. Notably, we identified 73 metabolic enzymes as RBPs. RNA-enzyme contacts frequently involve Rossmann fold domains with examples in evidence of both, mutual exclusivity of, or compatibility between RNA binding and enzymatic function. Our findings raise the prospect of previously hidden RNA-mediated regulatory interactions among cardiomyocyte gene expression, physiology, and metabolism. Cell Press 2016-07-21 /pmc/articles/PMC4977271/ /pubmed/27452465 http://dx.doi.org/10.1016/j.celrep.2016.06.084 Text en © 2016 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Resource
Liao, Yalin
Castello, Alfredo
Fischer, Bernd
Leicht, Stefan
Föehr, Sophia
Frese, Christian K.
Ragan, Chikako
Kurscheid, Sebastian
Pagler, Eloisa
Yang, Hao
Krijgsveld, Jeroen
Hentze, Matthias W.
Preiss, Thomas
The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease
title The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease
title_full The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease
title_fullStr The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease
title_full_unstemmed The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease
title_short The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease
title_sort cardiomyocyte rna-binding proteome: links to intermediary metabolism and heart disease
topic Resource
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977271/
https://www.ncbi.nlm.nih.gov/pubmed/27452465
http://dx.doi.org/10.1016/j.celrep.2016.06.084
work_keys_str_mv AT liaoyalin thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT castelloalfredo thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT fischerbernd thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT leichtstefan thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT foehrsophia thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT fresechristiank thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT raganchikako thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT kurscheidsebastian thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT paglereloisa thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT yanghao thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT krijgsveldjeroen thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT hentzematthiasw thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT preissthomas thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT liaoyalin cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT castelloalfredo cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT fischerbernd cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT leichtstefan cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT foehrsophia cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT fresechristiank cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT raganchikako cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT kurscheidsebastian cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT paglereloisa cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT yanghao cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT krijgsveldjeroen cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT hentzematthiasw cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease
AT preissthomas cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease