Cargando…
The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease
RNA functions through the dynamic formation of complexes with RNA-binding proteins (RBPs) in all clades of life. We determined the RBP repertoire of beating cardiomyocytic HL-1 cells by jointly employing two in vivo proteomic methods, mRNA interactome capture and RBDmap. Together, these yielded 1,14...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977271/ https://www.ncbi.nlm.nih.gov/pubmed/27452465 http://dx.doi.org/10.1016/j.celrep.2016.06.084 |
_version_ | 1782446995065012224 |
---|---|
author | Liao, Yalin Castello, Alfredo Fischer, Bernd Leicht, Stefan Föehr, Sophia Frese, Christian K. Ragan, Chikako Kurscheid, Sebastian Pagler, Eloisa Yang, Hao Krijgsveld, Jeroen Hentze, Matthias W. Preiss, Thomas |
author_facet | Liao, Yalin Castello, Alfredo Fischer, Bernd Leicht, Stefan Föehr, Sophia Frese, Christian K. Ragan, Chikako Kurscheid, Sebastian Pagler, Eloisa Yang, Hao Krijgsveld, Jeroen Hentze, Matthias W. Preiss, Thomas |
author_sort | Liao, Yalin |
collection | PubMed |
description | RNA functions through the dynamic formation of complexes with RNA-binding proteins (RBPs) in all clades of life. We determined the RBP repertoire of beating cardiomyocytic HL-1 cells by jointly employing two in vivo proteomic methods, mRNA interactome capture and RBDmap. Together, these yielded 1,148 RBPs, 391 of which are shared with all other available mammalian RBP repertoires, while 393 are thus far unique to cardiomyocytes. RBDmap further identified 568 regions of RNA contact within 368 RBPs. The cardiomyocyte mRNA interactome composition reflects their unique biology. Proteins with roles in cardiovascular physiology or disease, mitochondrial function, and intermediary metabolism are all highly represented. Notably, we identified 73 metabolic enzymes as RBPs. RNA-enzyme contacts frequently involve Rossmann fold domains with examples in evidence of both, mutual exclusivity of, or compatibility between RNA binding and enzymatic function. Our findings raise the prospect of previously hidden RNA-mediated regulatory interactions among cardiomyocyte gene expression, physiology, and metabolism. |
format | Online Article Text |
id | pubmed-4977271 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-49772712016-08-17 The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease Liao, Yalin Castello, Alfredo Fischer, Bernd Leicht, Stefan Föehr, Sophia Frese, Christian K. Ragan, Chikako Kurscheid, Sebastian Pagler, Eloisa Yang, Hao Krijgsveld, Jeroen Hentze, Matthias W. Preiss, Thomas Cell Rep Resource RNA functions through the dynamic formation of complexes with RNA-binding proteins (RBPs) in all clades of life. We determined the RBP repertoire of beating cardiomyocytic HL-1 cells by jointly employing two in vivo proteomic methods, mRNA interactome capture and RBDmap. Together, these yielded 1,148 RBPs, 391 of which are shared with all other available mammalian RBP repertoires, while 393 are thus far unique to cardiomyocytes. RBDmap further identified 568 regions of RNA contact within 368 RBPs. The cardiomyocyte mRNA interactome composition reflects their unique biology. Proteins with roles in cardiovascular physiology or disease, mitochondrial function, and intermediary metabolism are all highly represented. Notably, we identified 73 metabolic enzymes as RBPs. RNA-enzyme contacts frequently involve Rossmann fold domains with examples in evidence of both, mutual exclusivity of, or compatibility between RNA binding and enzymatic function. Our findings raise the prospect of previously hidden RNA-mediated regulatory interactions among cardiomyocyte gene expression, physiology, and metabolism. Cell Press 2016-07-21 /pmc/articles/PMC4977271/ /pubmed/27452465 http://dx.doi.org/10.1016/j.celrep.2016.06.084 Text en © 2016 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Resource Liao, Yalin Castello, Alfredo Fischer, Bernd Leicht, Stefan Föehr, Sophia Frese, Christian K. Ragan, Chikako Kurscheid, Sebastian Pagler, Eloisa Yang, Hao Krijgsveld, Jeroen Hentze, Matthias W. Preiss, Thomas The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease |
title | The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease |
title_full | The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease |
title_fullStr | The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease |
title_full_unstemmed | The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease |
title_short | The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease |
title_sort | cardiomyocyte rna-binding proteome: links to intermediary metabolism and heart disease |
topic | Resource |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977271/ https://www.ncbi.nlm.nih.gov/pubmed/27452465 http://dx.doi.org/10.1016/j.celrep.2016.06.084 |
work_keys_str_mv | AT liaoyalin thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT castelloalfredo thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT fischerbernd thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT leichtstefan thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT foehrsophia thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT fresechristiank thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT raganchikako thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT kurscheidsebastian thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT paglereloisa thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT yanghao thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT krijgsveldjeroen thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT hentzematthiasw thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT preissthomas thecardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT liaoyalin cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT castelloalfredo cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT fischerbernd cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT leichtstefan cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT foehrsophia cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT fresechristiank cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT raganchikako cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT kurscheidsebastian cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT paglereloisa cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT yanghao cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT krijgsveldjeroen cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT hentzematthiasw cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease AT preissthomas cardiomyocyternabindingproteomelinkstointermediarymetabolismandheartdisease |