Cargando…

Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets

The development of electron and scanning probe microscopies in the second half of the twentieth century has produced spectacular images of the internal structure and composition of matter with nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted method...

Descripción completa

Detalles Bibliográficos
Autores principales: Belianinov, Alex, Vasudevan, Rama, Strelcov, Evgheni, Steed, Chad, Yang, Sang Mo, Tselev, Alexander, Jesse, Stephen, Biegalski, Michael, Shipman, Galen, Symons, Christopher, Borisevich, Albina, Archibald, Rick, Kalinin, Sergei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977326/
https://www.ncbi.nlm.nih.gov/pubmed/27547705
http://dx.doi.org/10.1186/s40679-015-0006-6
_version_ 1782447007208570880
author Belianinov, Alex
Vasudevan, Rama
Strelcov, Evgheni
Steed, Chad
Yang, Sang Mo
Tselev, Alexander
Jesse, Stephen
Biegalski, Michael
Shipman, Galen
Symons, Christopher
Borisevich, Albina
Archibald, Rick
Kalinin, Sergei
author_facet Belianinov, Alex
Vasudevan, Rama
Strelcov, Evgheni
Steed, Chad
Yang, Sang Mo
Tselev, Alexander
Jesse, Stephen
Biegalski, Michael
Shipman, Galen
Symons, Christopher
Borisevich, Albina
Archibald, Rick
Kalinin, Sergei
author_sort Belianinov, Alex
collection PubMed
description The development of electron and scanning probe microscopies in the second half of the twentieth century has produced spectacular images of the internal structure and composition of matter with nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted methods of microscope operation, data acquisition, and analysis. Advances in imaging technology in the beginning of the twenty-first century have opened the proverbial floodgates on the availability of high-veracity information on structure and functionality. From the hardware perspective, high-resolution imaging methods now routinely resolve atomic positions with approximately picometer precision, allowing for quantitative measurements of individual bond lengths and angles. Similarly, functional imaging often leads to multidimensional data sets containing partial or full information on properties of interest, acquired as a function of multiple parameters (time, temperature, or other external stimuli). Here, we review several recent applications of the big and deep data analysis methods to visualize, compress, and translate this multidimensional structural and functional data into physically and chemically relevant information.
format Online
Article
Text
id pubmed-4977326
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-49773262016-08-18 Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets Belianinov, Alex Vasudevan, Rama Strelcov, Evgheni Steed, Chad Yang, Sang Mo Tselev, Alexander Jesse, Stephen Biegalski, Michael Shipman, Galen Symons, Christopher Borisevich, Albina Archibald, Rick Kalinin, Sergei Adv Struct Chem Imaging Review The development of electron and scanning probe microscopies in the second half of the twentieth century has produced spectacular images of the internal structure and composition of matter with nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted methods of microscope operation, data acquisition, and analysis. Advances in imaging technology in the beginning of the twenty-first century have opened the proverbial floodgates on the availability of high-veracity information on structure and functionality. From the hardware perspective, high-resolution imaging methods now routinely resolve atomic positions with approximately picometer precision, allowing for quantitative measurements of individual bond lengths and angles. Similarly, functional imaging often leads to multidimensional data sets containing partial or full information on properties of interest, acquired as a function of multiple parameters (time, temperature, or other external stimuli). Here, we review several recent applications of the big and deep data analysis methods to visualize, compress, and translate this multidimensional structural and functional data into physically and chemically relevant information. Springer International Publishing 2015-05-13 2015 /pmc/articles/PMC4977326/ /pubmed/27547705 http://dx.doi.org/10.1186/s40679-015-0006-6 Text en © Belianinov et al.; licensee Springer. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
spellingShingle Review
Belianinov, Alex
Vasudevan, Rama
Strelcov, Evgheni
Steed, Chad
Yang, Sang Mo
Tselev, Alexander
Jesse, Stephen
Biegalski, Michael
Shipman, Galen
Symons, Christopher
Borisevich, Albina
Archibald, Rick
Kalinin, Sergei
Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets
title Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets
title_full Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets
title_fullStr Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets
title_full_unstemmed Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets
title_short Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets
title_sort big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977326/
https://www.ncbi.nlm.nih.gov/pubmed/27547705
http://dx.doi.org/10.1186/s40679-015-0006-6
work_keys_str_mv AT belianinovalex bigdataanddeepdatainscanningandelectronmicroscopiesderivingfunctionalityfrommultidimensionaldatasets
AT vasudevanrama bigdataanddeepdatainscanningandelectronmicroscopiesderivingfunctionalityfrommultidimensionaldatasets
AT strelcovevgheni bigdataanddeepdatainscanningandelectronmicroscopiesderivingfunctionalityfrommultidimensionaldatasets
AT steedchad bigdataanddeepdatainscanningandelectronmicroscopiesderivingfunctionalityfrommultidimensionaldatasets
AT yangsangmo bigdataanddeepdatainscanningandelectronmicroscopiesderivingfunctionalityfrommultidimensionaldatasets
AT tselevalexander bigdataanddeepdatainscanningandelectronmicroscopiesderivingfunctionalityfrommultidimensionaldatasets
AT jessestephen bigdataanddeepdatainscanningandelectronmicroscopiesderivingfunctionalityfrommultidimensionaldatasets
AT biegalskimichael bigdataanddeepdatainscanningandelectronmicroscopiesderivingfunctionalityfrommultidimensionaldatasets
AT shipmangalen bigdataanddeepdatainscanningandelectronmicroscopiesderivingfunctionalityfrommultidimensionaldatasets
AT symonschristopher bigdataanddeepdatainscanningandelectronmicroscopiesderivingfunctionalityfrommultidimensionaldatasets
AT borisevichalbina bigdataanddeepdatainscanningandelectronmicroscopiesderivingfunctionalityfrommultidimensionaldatasets
AT archibaldrick bigdataanddeepdatainscanningandelectronmicroscopiesderivingfunctionalityfrommultidimensionaldatasets
AT kalininsergei bigdataanddeepdatainscanningandelectronmicroscopiesderivingfunctionalityfrommultidimensionaldatasets