Cargando…
Adaptive local learning in sampling based motion planning for protein folding
BACKGROUND: Simulating protein folding motions is an important problem in computational biology. Motion planning algorithms, such as Probabilistic Roadmap Methods, have been successful in modeling the folding landscape. Probabilistic Roadmap Methods and variants contain several phases (i.e., samplin...
Autores principales: | Ekenna, Chinwe, Thomas, Shawna, Amato, Nancy M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977477/ https://www.ncbi.nlm.nih.gov/pubmed/27490494 http://dx.doi.org/10.1186/s12918-016-0297-9 |
Ejemplares similares
-
A New Tool to Study the Binding Behavior of Intrinsically Disordered Proteins
por: Upadhyay, Aakriti, et al.
Publicado: (2023) -
Deep Learning Methods in Predicting Gene Expression Levels for the Malaria Parasite
por: Tran, Tuan, et al.
Publicado: (2021) -
Molecular Descriptors Property Prediction Using Transformer-Based Approach
por: Tran, Tuan, et al.
Publicado: (2023) -
Apollo: Adaptive Polar Lattice-Based Local Obstacle Avoidance and Motion Planning for Automated Vehicles
por: Li, Yiqun, et al.
Publicado: (2023) -
Deep Learning-Based NMPC for Local Motion Planning of Last-Mile Delivery Robot
por: Imad, Muhammad, et al.
Publicado: (2022)