Cargando…
Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions
BACKGROUND: Gene expression is mediated by specialized cis-regulatory modules (CRMs), the most prominent of which are called enhancers. Early experiments indicated that enhancers located far from the gene promoters are often responsible for mediating gene transcription. Knowing their properties, reg...
Autores principales: | Kim, Seong Gon, Theera-Ampornpunt, Nawanol, Fang, Chih-Hao, Harwani, Mrudul, Grama, Ananth, Chaterji, Somali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977478/ https://www.ncbi.nlm.nih.gov/pubmed/27490187 http://dx.doi.org/10.1186/s12918-016-0302-3 |
Ejemplares similares
-
EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm
por: Kim, Seong Gon, et al.
Publicado: (2016) -
AIKYATAN: mapping distal regulatory elements using convolutional learning on GPU
por: Fang, Chih-Hao, et al.
Publicado: (2019) -
Early bread mold detection through microscopic images using convolutional neural network
por: Treepong, Panisa, et al.
Publicado: (2023) -
MicroRNA target prediction using thermodynamic and sequence curves
por: Ghoshal, Asish, et al.
Publicado: (2015) -
Erratum to: ‘MicroRNA target prediction using thermodynamic and sequence curves’
por: Ghoshal, Asish, et al.
Publicado: (2016)