Cargando…

An atomic symmetry-controlled thermal switch

We propose a simple diatomic system trapped inside an optical cavity to control the energy flow between two thermal baths. Through the action of the baths the system is driven to a non-equilibrium steady state. Using the Large Deviation theory we show that the number of photons flowing between the t...

Descripción completa

Detalles Bibliográficos
Autores principales: Manzano, Daniel, Kyoseva, Elica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977542/
https://www.ncbi.nlm.nih.gov/pubmed/27503552
http://dx.doi.org/10.1038/srep31161
_version_ 1782447047437189120
author Manzano, Daniel
Kyoseva, Elica
author_facet Manzano, Daniel
Kyoseva, Elica
author_sort Manzano, Daniel
collection PubMed
description We propose a simple diatomic system trapped inside an optical cavity to control the energy flow between two thermal baths. Through the action of the baths the system is driven to a non-equilibrium steady state. Using the Large Deviation theory we show that the number of photons flowing between the two baths is dramatically different depending on the symmetry of the atomic states. Here we present a deterministic scheme to prepare symmetric and antisymmetric atomic states with the use of external driving fields, thus implementing an atomic control switch for the energy flow.
format Online
Article
Text
id pubmed-4977542
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49775422016-08-18 An atomic symmetry-controlled thermal switch Manzano, Daniel Kyoseva, Elica Sci Rep Article We propose a simple diatomic system trapped inside an optical cavity to control the energy flow between two thermal baths. Through the action of the baths the system is driven to a non-equilibrium steady state. Using the Large Deviation theory we show that the number of photons flowing between the two baths is dramatically different depending on the symmetry of the atomic states. Here we present a deterministic scheme to prepare symmetric and antisymmetric atomic states with the use of external driving fields, thus implementing an atomic control switch for the energy flow. Nature Publishing Group 2016-08-09 /pmc/articles/PMC4977542/ /pubmed/27503552 http://dx.doi.org/10.1038/srep31161 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Manzano, Daniel
Kyoseva, Elica
An atomic symmetry-controlled thermal switch
title An atomic symmetry-controlled thermal switch
title_full An atomic symmetry-controlled thermal switch
title_fullStr An atomic symmetry-controlled thermal switch
title_full_unstemmed An atomic symmetry-controlled thermal switch
title_short An atomic symmetry-controlled thermal switch
title_sort atomic symmetry-controlled thermal switch
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977542/
https://www.ncbi.nlm.nih.gov/pubmed/27503552
http://dx.doi.org/10.1038/srep31161
work_keys_str_mv AT manzanodaniel anatomicsymmetrycontrolledthermalswitch
AT kyosevaelica anatomicsymmetrycontrolledthermalswitch
AT manzanodaniel atomicsymmetrycontrolledthermalswitch
AT kyosevaelica atomicsymmetrycontrolledthermalswitch