Cargando…
Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma
BACKGROUND: Glioblastoma (GBM) tumors exhibit strong phenotypic differences that can be quantified using magnetic resonance imaging (MRI), but the underlying biological drivers of these imaging phenotypes remain largely unknown. An Imaging-Genomics analysis was performed to reveal the mechanistic as...
Autores principales: | Grossmann, Patrick, Gutman, David A., Dunn, William D., Holder, Chad A., Aerts, Hugo J. W. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977720/ https://www.ncbi.nlm.nih.gov/pubmed/27502180 http://dx.doi.org/10.1186/s12885-016-2659-5 |
Ejemplares similares
-
Somatic mutations associated with MRI-derived volumetric features in glioblastoma
por: Gutman, David A., et al.
Publicado: (2015) -
Assessing the Effects of Software Platforms on Volumetric
Segmentation of Glioblastoma
por: Dunn, William D., et al.
Publicado: (2016) -
On the Prognosis of Multifocal Glioblastoma: An Evaluation Incorporating Volumetric MRI
por: Kasper, Johannes, et al.
Publicado: (2021) -
Catalase Overexpression Drives an Aggressive Phenotype in Glioblastoma
por: Flor, Susanne, et al.
Publicado: (2021) -
Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation
por: Parmar, Chintan, et al.
Publicado: (2014)