Cargando…

Mass Death of Predatory Carp, Chanodichthys erythropterus, Induced by Plerocercoid Larvae of Ligula intestinalis (Cestoda: Diphyllobothriidae)

We describe here the mass death of predatory carp, Chanodichthys erythropterus, in Korea induced by plerocercoid larvae of Ligula intestinalis as a result of host manipulation. The carcasses of fish with ligulid larvae were first found in the river-edge areas of Chilgok-bo in Nakdong-gang (River), K...

Descripción completa

Detalles Bibliográficos
Autores principales: Sohn, Woon-Mok, Na, Byoung-Kuk, Jung, Soo Gun, Kim, Koo Hwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society for Parasitology and Tropical Medicine 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977791/
https://www.ncbi.nlm.nih.gov/pubmed/27417095
http://dx.doi.org/10.3347/kjp.2016.54.3.363
Descripción
Sumario:We describe here the mass death of predatory carp, Chanodichthys erythropterus, in Korea induced by plerocercoid larvae of Ligula intestinalis as a result of host manipulation. The carcasses of fish with ligulid larvae were first found in the river-edge areas of Chilgok-bo in Nakdong-gang (River), Korea at early February 2016. This ecological phenomena also occurred in the adjacent areas of 3 dams of Nakdong-gang, i.e., Gangjeong-bo, Dalseong-bo, and Hapcheon-Changnyeong-bo. Total 1,173 fish carcasses were collected from the 4 regions. To examine the cause of death, we captured 10 wondering carp in the river-edge areas of Hapcheon-Changnyeong-bo with a landing net. They were 24.0-28.5 cm in length and 147-257 g in weight, and had 2-11 plerocercoid larvae in the abdominal cavity. Their digestive organs were slender and empty, and reproductive organs were not observed at all. The plerocercoid larvae occupied almost all spaces of the abdominal cavity under the air bladders. The proportion of larvae per fish was 14.6-32.1% of body weight. The larvae were ivory-white, 21.5-63.0 cm long, and 6.0-13.8 g in weight. We suggest that the preference for the river-edge in infected fish during winter is a modified behavioral response by host manipulation of the tapeworm larvae. The life cycle of this tapeworm seems to be successfully continued as the infected fish can be easily eaten by avian definitive hosts.