Cargando…
Modeling central metabolism and energy biosynthesis across microbial life
BACKGROUND: Automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking path...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977884/ https://www.ncbi.nlm.nih.gov/pubmed/27502787 http://dx.doi.org/10.1186/s12864-016-2887-8 |
_version_ | 1782447120143351808 |
---|---|
author | Edirisinghe, Janaka N. Weisenhorn, Pamela Conrad, Neal Xia, Fangfang Overbeek, Ross Stevens, Rick L. Henry, Christopher S. |
author_facet | Edirisinghe, Janaka N. Weisenhorn, Pamela Conrad, Neal Xia, Fangfang Overbeek, Ross Stevens, Rick L. Henry, Christopher S. |
author_sort | Edirisinghe, Janaka N. |
collection | PubMed |
description | BACKGROUND: Automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. RESULTS: To overcome this challenge, we developed methods and tools (http://coremodels.mcs.anl.gov) to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of model organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. CONCLUSIONS: We predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways across all microbial life and enable the scientific community to explore the analyses generated from this large-scale analysis of over 8000 microbial genomes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2887-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4977884 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-49778842016-08-10 Modeling central metabolism and energy biosynthesis across microbial life Edirisinghe, Janaka N. Weisenhorn, Pamela Conrad, Neal Xia, Fangfang Overbeek, Ross Stevens, Rick L. Henry, Christopher S. BMC Genomics Research Article BACKGROUND: Automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. RESULTS: To overcome this challenge, we developed methods and tools (http://coremodels.mcs.anl.gov) to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of model organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. CONCLUSIONS: We predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways across all microbial life and enable the scientific community to explore the analyses generated from this large-scale analysis of over 8000 microbial genomes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2887-8) contains supplementary material, which is available to authorized users. BioMed Central 2016-08-08 /pmc/articles/PMC4977884/ /pubmed/27502787 http://dx.doi.org/10.1186/s12864-016-2887-8 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Edirisinghe, Janaka N. Weisenhorn, Pamela Conrad, Neal Xia, Fangfang Overbeek, Ross Stevens, Rick L. Henry, Christopher S. Modeling central metabolism and energy biosynthesis across microbial life |
title | Modeling central metabolism and energy biosynthesis across microbial life |
title_full | Modeling central metabolism and energy biosynthesis across microbial life |
title_fullStr | Modeling central metabolism and energy biosynthesis across microbial life |
title_full_unstemmed | Modeling central metabolism and energy biosynthesis across microbial life |
title_short | Modeling central metabolism and energy biosynthesis across microbial life |
title_sort | modeling central metabolism and energy biosynthesis across microbial life |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977884/ https://www.ncbi.nlm.nih.gov/pubmed/27502787 http://dx.doi.org/10.1186/s12864-016-2887-8 |
work_keys_str_mv | AT edirisinghejanakan modelingcentralmetabolismandenergybiosynthesisacrossmicrobiallife AT weisenhornpamela modelingcentralmetabolismandenergybiosynthesisacrossmicrobiallife AT conradneal modelingcentralmetabolismandenergybiosynthesisacrossmicrobiallife AT xiafangfang modelingcentralmetabolismandenergybiosynthesisacrossmicrobiallife AT overbeekross modelingcentralmetabolismandenergybiosynthesisacrossmicrobiallife AT stevensrickl modelingcentralmetabolismandenergybiosynthesisacrossmicrobiallife AT henrychristophers modelingcentralmetabolismandenergybiosynthesisacrossmicrobiallife |