Cargando…
Clinically-inspired automatic classification of ovarian carcinoma subtypes
CONTEXT: It has been shown that ovarian carcinoma subtypes are distinct pathologic entities with differing prognostic and therapeutic implications. Histotyping by pathologists has good reproducibility, but occasional cases are challenging and require immunohistochemistry and subspecialty consultatio...
Autores principales: | BenTaieb, Aïcha, Nosrati, Masoud S, Li-Chang, Hector, Huntsman, David, Hamarneh, Ghassan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977973/ https://www.ncbi.nlm.nih.gov/pubmed/27563487 http://dx.doi.org/10.4103/2153-3539.186899 |
Ejemplares similares
-
ADFAC: Automatic detection of facial articulatory features
por: Garg, Saurabh, et al.
Publicado: (2020) -
Integration of tumor extrinsic and intrinsic features associates with immunotherapy response in non-small cell lung cancer
por: Lau, Denise, et al.
Publicado: (2022) -
Ovarian Carcinoma Subtypes Are Different Diseases: Implications for Biomarker Studies
por: Köbel, Martin, et al.
Publicado: (2008) -
Artificial intelligence-augmented histopathologic review using image analysis to optimize DNA yield from formalin-fixed paraffin-embedded slides
por: Osinski, Bolesław L., et al.
Publicado: (2022) -
Predicting the clinical management of skin lesions using deep learning
por: Abhishek, Kumar, et al.
Publicado: (2021)