Cargando…
Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
BACKGROUND: Deep learning (DL) is a representation learning approach ideally suited for image analysis challenges in digital pathology (DP). The variety of image analysis tasks in the context of DP includes detection and counting (e.g., mitotic events), segmentation (e.g., nuclei), and tissue classi...
Autores principales: | Janowczyk, Andrew, Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977982/ https://www.ncbi.nlm.nih.gov/pubmed/27563488 http://dx.doi.org/10.4103/2153-3539.186902 |
Ejemplares similares
-
Quantitative Assessment of the Effects of Compression on Deep Learning in Digital Pathology Image Analysis
por: Chen, Yijiang, et al.
Publicado: (2020) -
Quick Annotator: an open‐source digital pathology based rapid image annotation tool
por: Miao, Runtian, et al.
Publicado: (2021) -
History of the SPIE Medical Imaging Digital Pathology Conference
por: Madabhushi, Anant, et al.
Publicado: (2022) -
A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of H&E tissue
por: Nirschl, Jeffrey J., et al.
Publicado: (2018) -
Digital pathology and computational image analysis in nephropathology
por: Barisoni, Laura, et al.
Publicado: (2020)