Cargando…
Biclustering Models for Two-Mode Ordinal Data
The work in this paper introduces finite mixture models that can be used to simultaneously cluster the rows and columns of two-mode ordinal categorical response data, such as those resulting from Likert scale responses. We use the popular proportional odds parameterisation and propose models which p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978779/ https://www.ncbi.nlm.nih.gov/pubmed/27329648 http://dx.doi.org/10.1007/s11336-016-9503-3 |
_version_ | 1782447218317328384 |
---|---|
author | Matechou, Eleni Liu, Ivy Fernández, Daniel Farias, Miguel Gjelsvik, Bergljot |
author_facet | Matechou, Eleni Liu, Ivy Fernández, Daniel Farias, Miguel Gjelsvik, Bergljot |
author_sort | Matechou, Eleni |
collection | PubMed |
description | The work in this paper introduces finite mixture models that can be used to simultaneously cluster the rows and columns of two-mode ordinal categorical response data, such as those resulting from Likert scale responses. We use the popular proportional odds parameterisation and propose models which provide insights into major patterns in the data. Model-fitting is performed using the EM algorithm, and a fuzzy allocation of rows and columns to corresponding clusters is obtained. The clustering ability of the models is evaluated in a simulation study and demonstrated using two real data sets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11336-016-9503-3) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4978779 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-49787792016-08-19 Biclustering Models for Two-Mode Ordinal Data Matechou, Eleni Liu, Ivy Fernández, Daniel Farias, Miguel Gjelsvik, Bergljot Psychometrika Article The work in this paper introduces finite mixture models that can be used to simultaneously cluster the rows and columns of two-mode ordinal categorical response data, such as those resulting from Likert scale responses. We use the popular proportional odds parameterisation and propose models which provide insights into major patterns in the data. Model-fitting is performed using the EM algorithm, and a fuzzy allocation of rows and columns to corresponding clusters is obtained. The clustering ability of the models is evaluated in a simulation study and demonstrated using two real data sets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11336-016-9503-3) contains supplementary material, which is available to authorized users. Springer US 2016-06-21 2016 /pmc/articles/PMC4978779/ /pubmed/27329648 http://dx.doi.org/10.1007/s11336-016-9503-3 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Matechou, Eleni Liu, Ivy Fernández, Daniel Farias, Miguel Gjelsvik, Bergljot Biclustering Models for Two-Mode Ordinal Data |
title | Biclustering Models for Two-Mode Ordinal Data |
title_full | Biclustering Models for Two-Mode Ordinal Data |
title_fullStr | Biclustering Models for Two-Mode Ordinal Data |
title_full_unstemmed | Biclustering Models for Two-Mode Ordinal Data |
title_short | Biclustering Models for Two-Mode Ordinal Data |
title_sort | biclustering models for two-mode ordinal data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978779/ https://www.ncbi.nlm.nih.gov/pubmed/27329648 http://dx.doi.org/10.1007/s11336-016-9503-3 |
work_keys_str_mv | AT matechoueleni biclusteringmodelsfortwomodeordinaldata AT liuivy biclusteringmodelsfortwomodeordinaldata AT fernandezdaniel biclusteringmodelsfortwomodeordinaldata AT fariasmiguel biclusteringmodelsfortwomodeordinaldata AT gjelsvikbergljot biclusteringmodelsfortwomodeordinaldata |