Cargando…
Prediction of G Protein-Coupled Receptors with SVM-Prot Features and Random Forest
G protein-coupled receptors (GPCRs) are the largest receptor superfamily. In this paper, we try to employ physical-chemical properties, which come from SVM-Prot, to represent GPCR. Random Forest was utilized as classifier for distinguishing them from other protein sequences. MEME suite was used to d...
Autores principales: | Liao, Zhijun, Ju, Ying, Zou, Quan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978840/ https://www.ncbi.nlm.nih.gov/pubmed/27529053 http://dx.doi.org/10.1155/2016/8309253 |
Ejemplares similares
-
SVM-Prot 2016: A Web-Server for Machine Learning Prediction of Protein Functional Families from Sequence Irrespective of Similarity
por: Li, Ying Hong, et al.
Publicado: (2016) -
DrugHybrid_BS: Using Hybrid Feature Combined With Bagging-SVM to Predict Potentially Druggable Proteins
por: Gong, Yuxin, et al.
Publicado: (2021) -
iDNA-Prot: Identification of DNA Binding Proteins Using Random Forest with Grey Model
por: Lin, Wei-Zhong, et al.
Publicado: (2011) -
In Silico Prediction of Gamma-Aminobutyric Acid Type-A Receptors Using Novel Machine-Learning-Based SVM and GBDT Approaches
por: Liao, Zhijun, et al.
Publicado: (2016) -
Using random forests for assistance in the curation of G-protein coupled receptor databases
por: Shkurin, Aleksei, et al.
Publicado: (2017)