Cargando…

mDCC_tools: characterizing multi-modal atomic motions in molecular dynamics trajectories

Summary: We previously reported the multi-modal Dynamic Cross Correlation (mDCC) method for analyzing molecular dynamics trajectories. This method quantifies the correlation coefficients of atomic motions with complex multi-modal behaviors by using a Bayesian-based pattern recognition technique that...

Descripción completa

Detalles Bibliográficos
Autores principales: Kasahara, Kota, Mohan, Neetha, Fukuda, Ikuo, Nakamura, Haruki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978922/
https://www.ncbi.nlm.nih.gov/pubmed/27153575
http://dx.doi.org/10.1093/bioinformatics/btw129
_version_ 1782447241352445952
author Kasahara, Kota
Mohan, Neetha
Fukuda, Ikuo
Nakamura, Haruki
author_facet Kasahara, Kota
Mohan, Neetha
Fukuda, Ikuo
Nakamura, Haruki
author_sort Kasahara, Kota
collection PubMed
description Summary: We previously reported the multi-modal Dynamic Cross Correlation (mDCC) method for analyzing molecular dynamics trajectories. This method quantifies the correlation coefficients of atomic motions with complex multi-modal behaviors by using a Bayesian-based pattern recognition technique that can effectively capture transiently formed, unstable interactions. Here, we present an open source toolkit for performing the mDCC analysis, including pattern recognitions, complex network analyses and visualizations. We include a tutorial document that thoroughly explains how to apply this toolkit for an analysis, using the example trajectory of the 100 ns simulation of an engineered endothelin-1 peptide dimer. Availability and implementation: The source code is available for free at http://www.protein.osaka-u.ac.jp/rcsfp/pi/mdcctools/, implemented in C ++ and Python, and supported on Linux. Contact: kota.kasahara@protein.osaka-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-4978922
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-49789222016-08-11 mDCC_tools: characterizing multi-modal atomic motions in molecular dynamics trajectories Kasahara, Kota Mohan, Neetha Fukuda, Ikuo Nakamura, Haruki Bioinformatics Applications Notes Summary: We previously reported the multi-modal Dynamic Cross Correlation (mDCC) method for analyzing molecular dynamics trajectories. This method quantifies the correlation coefficients of atomic motions with complex multi-modal behaviors by using a Bayesian-based pattern recognition technique that can effectively capture transiently formed, unstable interactions. Here, we present an open source toolkit for performing the mDCC analysis, including pattern recognitions, complex network analyses and visualizations. We include a tutorial document that thoroughly explains how to apply this toolkit for an analysis, using the example trajectory of the 100 ns simulation of an engineered endothelin-1 peptide dimer. Availability and implementation: The source code is available for free at http://www.protein.osaka-u.ac.jp/rcsfp/pi/mdcctools/, implemented in C ++ and Python, and supported on Linux. Contact: kota.kasahara@protein.osaka-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2016-08-15 2016-04-07 /pmc/articles/PMC4978922/ /pubmed/27153575 http://dx.doi.org/10.1093/bioinformatics/btw129 Text en © The Author 2016. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Applications Notes
Kasahara, Kota
Mohan, Neetha
Fukuda, Ikuo
Nakamura, Haruki
mDCC_tools: characterizing multi-modal atomic motions in molecular dynamics trajectories
title mDCC_tools: characterizing multi-modal atomic motions in molecular dynamics trajectories
title_full mDCC_tools: characterizing multi-modal atomic motions in molecular dynamics trajectories
title_fullStr mDCC_tools: characterizing multi-modal atomic motions in molecular dynamics trajectories
title_full_unstemmed mDCC_tools: characterizing multi-modal atomic motions in molecular dynamics trajectories
title_short mDCC_tools: characterizing multi-modal atomic motions in molecular dynamics trajectories
title_sort mdcc_tools: characterizing multi-modal atomic motions in molecular dynamics trajectories
topic Applications Notes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978922/
https://www.ncbi.nlm.nih.gov/pubmed/27153575
http://dx.doi.org/10.1093/bioinformatics/btw129
work_keys_str_mv AT kasaharakota mdcctoolscharacterizingmultimodalatomicmotionsinmoleculardynamicstrajectories
AT mohanneetha mdcctoolscharacterizingmultimodalatomicmotionsinmoleculardynamicstrajectories
AT fukudaikuo mdcctoolscharacterizingmultimodalatomicmotionsinmoleculardynamicstrajectories
AT nakamuraharuki mdcctoolscharacterizingmultimodalatomicmotionsinmoleculardynamicstrajectories