Cargando…
MEMO: multi-experiment mixture model analysis of censored data
Motivation: The statistical analysis of single-cell data is a challenge in cell biological studies. Tailored statistical models and computational methods are required to resolve the subpopulation structure, i.e. to correctly identify and characterize subpopulations. These approaches also support the...
Autores principales: | Geissen, Eva-Maria, Hasenauer, Jan, Heinrich, Stephanie, Hauf, Silke, Theis, Fabian J., Radde, Nicole E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978932/ https://www.ncbi.nlm.nih.gov/pubmed/27153627 http://dx.doi.org/10.1093/bioinformatics/btw190 |
Ejemplares similares
-
ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics
por: Hasenauer, Jan, et al.
Publicado: (2014) -
Probabilistic PCA of censored data: accounting for uncertainties in the visualization of high-throughput single-cell qPCR data
por: Buettner, Florian, et al.
Publicado: (2014) -
Variable selection in a flexible parametric mixture cure model with interval‐censored data
por: Scolas, Sylvie, et al.
Publicado: (2015) -
Finding MEMO—Emerging Evidence for MEMO1′s Function in Development and Disease
por: Schotanus, Michaela D., et al.
Publicado: (2020) -
Memo to the PSCC: Scheduling of experiment PS 172
por: CERN. Geneva. Proton Synchrotron and Synchrocyclotron Committee
Publicado: (1984)