Cargando…

Microfabric Vessels for Embryoid Body Formation and Rapid Differentiation of Pluripotent Stem Cells

Various scalable three-dimensional culture systems for regenerative medicine using human induced pluripotent stem cells (hiPSCs) have been developed to date. However, stable production of hiPSCs with homogeneous qualities still remains a challenge. Here, we describe a novel and simple embryoid body...

Descripción completa

Detalles Bibliográficos
Autores principales: Sato, Hiroki, Idiris, Alimjan, Miwa, Tatsuaki, Kumagai, Hiromichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978968/
https://www.ncbi.nlm.nih.gov/pubmed/27507707
http://dx.doi.org/10.1038/srep31063
Descripción
Sumario:Various scalable three-dimensional culture systems for regenerative medicine using human induced pluripotent stem cells (hiPSCs) have been developed to date. However, stable production of hiPSCs with homogeneous qualities still remains a challenge. Here, we describe a novel and simple embryoid body (EB) formation system using unique microfabricated culture vessels. Furthermore, this culture system is useful for high throughput EB formation and rapid generation of differentiated cells such as neural stem cells (NSCs) from hiPSCs. The period of NSC differentiation was significantly shortened under high EB density culture conditions. Simultaneous mass production of a pure population of NSCs was possible within 4 days. These results indicate that the novel culture system might not only become a unique tool to obtain new insights into developmental biology based on human stem cells, but also provide an important tractable platform for efficient and stable production of NSCs for clinical applications.