Cargando…
Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array
This paper reports a novel microarray chip for in-situ, real-time and selective electroporation on individual cells integrated with cell positioning and impedance monitoring. An array of quadrupole-electrode units (termed positioning electrodes) and pairs of planar center electrodes located at the c...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979028/ https://www.ncbi.nlm.nih.gov/pubmed/27507603 http://dx.doi.org/10.1038/srep31392 |
_version_ | 1782447258756710400 |
---|---|
author | Guo, Xiaoliang Zhu, Rong |
author_facet | Guo, Xiaoliang Zhu, Rong |
author_sort | Guo, Xiaoliang |
collection | PubMed |
description | This paper reports a novel microarray chip for in-situ, real-time and selective electroporation on individual cells integrated with cell positioning and impedance monitoring. An array of quadrupole-electrode units (termed positioning electrodes) and pairs of planar center electrodes located at the centers of each quadrupole-electrode unit were fabricated on the chip. The positioning electrodes are used to trap and position living cells onto the center electrodes based on negative dielectrophoresis (nDEP). The center electrodes are used for in-situ cell electroporation, and also used to measure cell impedance for monitoring cellular dynamics in real time. Controllably selective electroporation and electrical measurement on the cells in array are realized. We present an evidence of selective electroporation through use of fluorescent dyes. Subsequently we use in-situ and real-time impedance measurement to monitor the process, which demonstrates the dynamic behavior of the cell electroporation. Finally, we show the use of this device to perform successful transfection onto individual HeLa cells with vector DNA encoding a green fluorescent. |
format | Online Article Text |
id | pubmed-4979028 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-49790282016-08-19 Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array Guo, Xiaoliang Zhu, Rong Sci Rep Article This paper reports a novel microarray chip for in-situ, real-time and selective electroporation on individual cells integrated with cell positioning and impedance monitoring. An array of quadrupole-electrode units (termed positioning electrodes) and pairs of planar center electrodes located at the centers of each quadrupole-electrode unit were fabricated on the chip. The positioning electrodes are used to trap and position living cells onto the center electrodes based on negative dielectrophoresis (nDEP). The center electrodes are used for in-situ cell electroporation, and also used to measure cell impedance for monitoring cellular dynamics in real time. Controllably selective electroporation and electrical measurement on the cells in array are realized. We present an evidence of selective electroporation through use of fluorescent dyes. Subsequently we use in-situ and real-time impedance measurement to monitor the process, which demonstrates the dynamic behavior of the cell electroporation. Finally, we show the use of this device to perform successful transfection onto individual HeLa cells with vector DNA encoding a green fluorescent. Nature Publishing Group 2016-08-10 /pmc/articles/PMC4979028/ /pubmed/27507603 http://dx.doi.org/10.1038/srep31392 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Guo, Xiaoliang Zhu, Rong Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array |
title | Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array |
title_full | Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array |
title_fullStr | Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array |
title_full_unstemmed | Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array |
title_short | Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array |
title_sort | controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979028/ https://www.ncbi.nlm.nih.gov/pubmed/27507603 http://dx.doi.org/10.1038/srep31392 |
work_keys_str_mv | AT guoxiaoliang controllableinsitucellelectroporationwithcellpositioningandimpedancemonitoringusingmicroelectrodearray AT zhurong controllableinsitucellelectroporationwithcellpositioningandimpedancemonitoringusingmicroelectrodearray |