Cargando…

The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1

Humicola insolens is an excellent producer of pH-neutral active, thermostable cellulases that find many industrial applications. In the present study, we developed an efficient Agrobacterium tumefaciens-mediated transformation system for H. insolens. We transformed plasmids carrying the promoter of...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Xinxin, Li, Jinyang, Shi, Pengjun, Ji, Wangli, Liu, Bo, Zhang, Yuhong, Yao, Bin, Fan, Yunliu, Zhang, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979032/
https://www.ncbi.nlm.nih.gov/pubmed/27506519
http://dx.doi.org/10.1038/srep31108
_version_ 1782447259665825792
author Xu, Xinxin
Li, Jinyang
Shi, Pengjun
Ji, Wangli
Liu, Bo
Zhang, Yuhong
Yao, Bin
Fan, Yunliu
Zhang, Wei
author_facet Xu, Xinxin
Li, Jinyang
Shi, Pengjun
Ji, Wangli
Liu, Bo
Zhang, Yuhong
Yao, Bin
Fan, Yunliu
Zhang, Wei
author_sort Xu, Xinxin
collection PubMed
description Humicola insolens is an excellent producer of pH-neutral active, thermostable cellulases that find many industrial applications. In the present study, we developed an efficient Agrobacterium tumefaciens-mediated transformation system for H. insolens. We transformed plasmids carrying the promoter of the glyceraldehyde-3-phosphate dehydrogenase gene of H. insolens driving the transcription of genes encoding neomycin phosphotransferase, hygromycin B phosphotransferase, and enhanced green fluorescent protein. We optimized transformation efficiency to obtain over 300 transformants/10(6) conidia. T-DNA insertional mutagenesis was employed to generate an H. insolens mutant library, and we isolated a transformant termed T4 with enhanced cellulase and hemicellulase activities. The FPase, endoglucanase, cellobiohydrolase, β-glucosidase, and xylanase activities of T4, measured at the end of fermentation, were 60%, 440%, 320%, 41%, and 81% higher than those of the wild-type strain, respectively. We isolated the sequences flanking the T-DNA insertions and thus identified new genes potentially involved in cellulase and hemicellulase production. Our results show that it is feasible to use T-DNA insertional mutagenesis to identify novel candidate genes involved in cellulase production. This will be valuable when genetic improvement programs seeking to enhance cellulase production are planned, and will also allow us to gain a better understanding of the genetics of the thermophilic fungus H. insolens.
format Online
Article
Text
id pubmed-4979032
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49790322016-08-19 The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1 Xu, Xinxin Li, Jinyang Shi, Pengjun Ji, Wangli Liu, Bo Zhang, Yuhong Yao, Bin Fan, Yunliu Zhang, Wei Sci Rep Article Humicola insolens is an excellent producer of pH-neutral active, thermostable cellulases that find many industrial applications. In the present study, we developed an efficient Agrobacterium tumefaciens-mediated transformation system for H. insolens. We transformed plasmids carrying the promoter of the glyceraldehyde-3-phosphate dehydrogenase gene of H. insolens driving the transcription of genes encoding neomycin phosphotransferase, hygromycin B phosphotransferase, and enhanced green fluorescent protein. We optimized transformation efficiency to obtain over 300 transformants/10(6) conidia. T-DNA insertional mutagenesis was employed to generate an H. insolens mutant library, and we isolated a transformant termed T4 with enhanced cellulase and hemicellulase activities. The FPase, endoglucanase, cellobiohydrolase, β-glucosidase, and xylanase activities of T4, measured at the end of fermentation, were 60%, 440%, 320%, 41%, and 81% higher than those of the wild-type strain, respectively. We isolated the sequences flanking the T-DNA insertions and thus identified new genes potentially involved in cellulase and hemicellulase production. Our results show that it is feasible to use T-DNA insertional mutagenesis to identify novel candidate genes involved in cellulase production. This will be valuable when genetic improvement programs seeking to enhance cellulase production are planned, and will also allow us to gain a better understanding of the genetics of the thermophilic fungus H. insolens. Nature Publishing Group 2016-08-10 /pmc/articles/PMC4979032/ /pubmed/27506519 http://dx.doi.org/10.1038/srep31108 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Xu, Xinxin
Li, Jinyang
Shi, Pengjun
Ji, Wangli
Liu, Bo
Zhang, Yuhong
Yao, Bin
Fan, Yunliu
Zhang, Wei
The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1
title The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1
title_full The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1
title_fullStr The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1
title_full_unstemmed The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1
title_short The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1
title_sort use of t-dna insertional mutagenesis to improve cellulase production by the thermophilic fungus humicola insolens y1
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979032/
https://www.ncbi.nlm.nih.gov/pubmed/27506519
http://dx.doi.org/10.1038/srep31108
work_keys_str_mv AT xuxinxin theuseoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT lijinyang theuseoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT shipengjun theuseoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT jiwangli theuseoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT liubo theuseoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT zhangyuhong theuseoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT yaobin theuseoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT fanyunliu theuseoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT zhangwei theuseoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT xuxinxin useoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT lijinyang useoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT shipengjun useoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT jiwangli useoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT liubo useoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT zhangyuhong useoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT yaobin useoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT fanyunliu useoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1
AT zhangwei useoftdnainsertionalmutagenesistoimprovecellulaseproductionbythethermophilicfungushumicolainsolensy1