Cargando…
t-Test at the Probe Level: An Alternative Method to Identify Statistically Significant Genes for Microarray Data
Microarray data analysis typically consists in identifying a list of differentially expressed genes (DEG), i.e., the genes that are differentially expressed between two experimental conditions. Variance shrinkage methods have been considered a better choice than the standard t-test for selecting the...
Autores principales: | Boareto, Marcelo, Caticha, Nestor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979051/ https://www.ncbi.nlm.nih.gov/pubmed/27600352 http://dx.doi.org/10.3390/microarrays3040340 |
Ejemplares similares
-
Microarray Probe Expression Measures, Data Normalization and
Statistical Validation
por: Saviozzi, Silvia, et al.
Publicado: (2003) -
Entropic Dynamics in Neural Networks, the Renormalization Group and the Hamilton-Jacobi-Bellman Equation
por: Caticha, Nestor
Publicado: (2020) -
Analysis of probe level patterns in Affymetrix microarray data
por: Cambon, Alexander C, et al.
Publicado: (2007) -
Assessing Statistical Significance in Microarray Experiments Using the Distance Between Microarrays
por: Hayden, Douglas, et al.
Publicado: (2009) -
A robust method for estimating gene expression states using Affymetrix microarray probe level data
por: Ohtaki, Megu, et al.
Publicado: (2010)