Cargando…
Variation of RNA Quality and Quantity Are Major Sources of Batch Effects in Microarray Expression Data
The great utility of microarrays for genome-scale expression analysis is challenged by the widespread presence of batch effects, which bias expression measurements in particular within large data sets. These unwanted technical artifacts can obscure biological variation and thus significantly reduce...
Autores principales: | Fasold, Mario, Binder, Hans |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979052/ https://www.ncbi.nlm.nih.gov/pubmed/27600351 http://dx.doi.org/10.3390/microarrays3040322 |
Ejemplares similares
-
Estimating RNA-quality using GeneChip microarrays
por: Fasold, Mario, et al.
Publicado: (2012) -
AffyRNADegradation: control and correction of RNA quality effects in GeneChip expression data
por: Fasold, Mario, et al.
Publicado: (2013) -
Mismatch and G-Stack Modulated Probe Signals on SNP Microarrays
por: Binder, Hans, et al.
Publicado: (2009) -
Removing Batch Effects in Analysis of Expression Microarray Data: An Evaluation of Six Batch Adjustment Methods
por: Chen, Chao, et al.
Publicado: (2011) -
G-stack modulated probe intensities on expression arrays - sequence corrections and signal calibration
por: Fasold, Mario, et al.
Publicado: (2010)