Cargando…
DIDS (4,4'-Diisothiocyanatostilbene-2,2'-disulfonate) directly inhibits caspase activity in HeLa cell lysates
Apoptosis is an important mechanism of cell demise in multicellular organisms and Cl(−) transport has an important role in the progression of the apoptotic volume decrease (AVD). DIDS (4,4'-Diisothiocyanatostilbene-2,2'-disulfonate) is one of the most commonly used Cl(−) transport inhibito...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979491/ https://www.ncbi.nlm.nih.gov/pubmed/27551467 http://dx.doi.org/10.1038/cddiscovery.2015.37 |
Sumario: | Apoptosis is an important mechanism of cell demise in multicellular organisms and Cl(−) transport has an important role in the progression of the apoptotic volume decrease (AVD). DIDS (4,4'-Diisothiocyanatostilbene-2,2'-disulfonate) is one of the most commonly used Cl(−) transport inhibitors that eliminates or reduces different apoptotic hallmarks such as AVD, caspase-3 activity and DNA fragmentation. DIDS is also a protein crosslinker that alkylates either amino or thiol groups. Since caspases are thiol proteases, our aim was to study whether DIDS could directly inhibit the activity of these proteases. Here, we show that caspase activity induced by 4 h incubation with staurosporine was inhibited by DIDS in HeLa cells that were maintained in the absence of serum for 24 h. Interestingly, the caspase-inhibitory effect of DIDS is downstream to the inhibition of cytochrome c release, suggesting that DIDS might be also acting at the apoptosome. Moreover, DIDS was able to inhibit capase-3, -9, and -8 activities in cell lysates, implying that DIDS can react with and directly block caspases. Our data suggest that antiapoptotic activity of DIDS involves not only inhibition of the voltage-dependent anion channel (VDAC) at the mitochondria and Cl(−) channels at the plasma membrane, but also a third mechanism based on the direct inhibition of caspases. |
---|