Cargando…
Filling in the GAPS: evaluating completeness and coverage of open‐access biodiversity databases in the United States
Primary biodiversity data constitute observations of particular species at given points in time and space. Open‐access electronic databases provide unprecedented access to these data, but their usefulness in characterizing species distributions and patterns in biodiversity depend on how complete spe...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979697/ https://www.ncbi.nlm.nih.gov/pubmed/27547303 http://dx.doi.org/10.1002/ece3.2225 |
_version_ | 1782447356645474304 |
---|---|
author | Troia, Matthew J. McManamay, Ryan A. |
author_facet | Troia, Matthew J. McManamay, Ryan A. |
author_sort | Troia, Matthew J. |
collection | PubMed |
description | Primary biodiversity data constitute observations of particular species at given points in time and space. Open‐access electronic databases provide unprecedented access to these data, but their usefulness in characterizing species distributions and patterns in biodiversity depend on how complete species inventories are at a given survey location and how uniformly distributed survey locations are along dimensions of time, space, and environment. Our aim was to compare completeness and coverage among three open‐access databases representing ten taxonomic groups (amphibians, birds, freshwater bivalves, crayfish, freshwater fish, fungi, insects, mammals, plants, and reptiles) in the contiguous United States. We compiled occurrence records from the Global Biodiversity Information Facility (GBIF), the North American Breeding Bird Survey (BBS), and federally administered fish surveys (FFS). We aggregated occurrence records by 0.1° × 0.1° grid cells and computed three completeness metrics to classify each grid cell as well‐surveyed or not. Next, we compared frequency distributions of surveyed grid cells to background environmental conditions in a GIS and performed Kolmogorov–Smirnov tests to quantify coverage through time, along two spatial gradients, and along eight environmental gradients. The three databases contributed >13.6 million reliable occurrence records distributed among >190,000 grid cells. The percent of well‐surveyed grid cells was substantially lower for GBIF (5.2%) than for systematic surveys (BBS and FFS; 82.5%). Still, the large number of GBIF occurrence records produced at least 250 well‐surveyed grid cells for six of nine taxonomic groups. Coverages of systematic surveys were less biased across spatial and environmental dimensions but were more biased in temporal coverage compared to GBIF data. GBIF coverages also varied among taxonomic groups, consistent with commonly recognized geographic, environmental, and institutional sampling biases. This comprehensive assessment of biodiversity data across the contiguous United States provides a prioritization scheme to fill in the gaps by contributing existing occurrence records to the public domain and planning future surveys. |
format | Online Article Text |
id | pubmed-4979697 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-49796972016-08-19 Filling in the GAPS: evaluating completeness and coverage of open‐access biodiversity databases in the United States Troia, Matthew J. McManamay, Ryan A. Ecol Evol Original Research Primary biodiversity data constitute observations of particular species at given points in time and space. Open‐access electronic databases provide unprecedented access to these data, but their usefulness in characterizing species distributions and patterns in biodiversity depend on how complete species inventories are at a given survey location and how uniformly distributed survey locations are along dimensions of time, space, and environment. Our aim was to compare completeness and coverage among three open‐access databases representing ten taxonomic groups (amphibians, birds, freshwater bivalves, crayfish, freshwater fish, fungi, insects, mammals, plants, and reptiles) in the contiguous United States. We compiled occurrence records from the Global Biodiversity Information Facility (GBIF), the North American Breeding Bird Survey (BBS), and federally administered fish surveys (FFS). We aggregated occurrence records by 0.1° × 0.1° grid cells and computed three completeness metrics to classify each grid cell as well‐surveyed or not. Next, we compared frequency distributions of surveyed grid cells to background environmental conditions in a GIS and performed Kolmogorov–Smirnov tests to quantify coverage through time, along two spatial gradients, and along eight environmental gradients. The three databases contributed >13.6 million reliable occurrence records distributed among >190,000 grid cells. The percent of well‐surveyed grid cells was substantially lower for GBIF (5.2%) than for systematic surveys (BBS and FFS; 82.5%). Still, the large number of GBIF occurrence records produced at least 250 well‐surveyed grid cells for six of nine taxonomic groups. Coverages of systematic surveys were less biased across spatial and environmental dimensions but were more biased in temporal coverage compared to GBIF data. GBIF coverages also varied among taxonomic groups, consistent with commonly recognized geographic, environmental, and institutional sampling biases. This comprehensive assessment of biodiversity data across the contiguous United States provides a prioritization scheme to fill in the gaps by contributing existing occurrence records to the public domain and planning future surveys. John Wiley and Sons Inc. 2016-06-12 /pmc/articles/PMC4979697/ /pubmed/27547303 http://dx.doi.org/10.1002/ece3.2225 Text en Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Troia, Matthew J. McManamay, Ryan A. Filling in the GAPS: evaluating completeness and coverage of open‐access biodiversity databases in the United States |
title | Filling in the GAPS: evaluating completeness and coverage of open‐access biodiversity databases in the United States |
title_full | Filling in the GAPS: evaluating completeness and coverage of open‐access biodiversity databases in the United States |
title_fullStr | Filling in the GAPS: evaluating completeness and coverage of open‐access biodiversity databases in the United States |
title_full_unstemmed | Filling in the GAPS: evaluating completeness and coverage of open‐access biodiversity databases in the United States |
title_short | Filling in the GAPS: evaluating completeness and coverage of open‐access biodiversity databases in the United States |
title_sort | filling in the gaps: evaluating completeness and coverage of open‐access biodiversity databases in the united states |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979697/ https://www.ncbi.nlm.nih.gov/pubmed/27547303 http://dx.doi.org/10.1002/ece3.2225 |
work_keys_str_mv | AT troiamatthewj fillinginthegapsevaluatingcompletenessandcoverageofopenaccessbiodiversitydatabasesintheunitedstates AT mcmanamayryana fillinginthegapsevaluatingcompletenessandcoverageofopenaccessbiodiversitydatabasesintheunitedstates |