Cargando…

Star-shaped and linear π-conjugated oligomers consisting of a tetrathienoanthracene core and multiple diketopyrrolopyrrole arms for organic solar cells

Solution-processable star-shaped and linear π-conjugated oligomers consisting of an electron-donating tetrathienoanthracene (TTA) core and electron-accepting diketopyrrolopyrrole (DPP) arms, namely, TTA-DPP4 and TTA-DPP2, were designed and synthesized. Based on density functional theory calculations...

Descripción completa

Detalles Bibliográficos
Autores principales: Komiyama, Hideaki, Adachi, Chihaya, Yasuda, Takuma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979874/
https://www.ncbi.nlm.nih.gov/pubmed/27559398
http://dx.doi.org/10.3762/bjoc.12.142
Descripción
Sumario:Solution-processable star-shaped and linear π-conjugated oligomers consisting of an electron-donating tetrathienoanthracene (TTA) core and electron-accepting diketopyrrolopyrrole (DPP) arms, namely, TTA-DPP4 and TTA-DPP2, were designed and synthesized. Based on density functional theory calculations, the star-shaped TTA-DPP4 has a larger oscillator strength than the linear TTA-DPP2, and consequently, better photoabsorption property over a wide range of visible wavelengths. The photovoltaic properties of organic solar cells based on TTA-DPP4 and TTA-DPP2 with a fullerene derivative were evaluated by varying the thickness of the bulk heterojunction active layer. As a result of the enhanced visible absorption properties of the star-shaped π-conjugated structure, better photovoltaic performances were obtained with relatively thin active layers (40–60 nm).