Cargando…
Integrative Inferences on Pattern Geometries of Grapes Grown under Water Stress and Their Resulting Wines
Multiple datasets of two consecutive vintages of replicated grape and wines from six different deficit irrigation regimes are characterized and compared. The process consists of four temporal-ordered signature phases: harvest field data, juice composition, wine composition before bottling and bottle...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980011/ https://www.ncbi.nlm.nih.gov/pubmed/27508416 http://dx.doi.org/10.1371/journal.pone.0160621 |
_version_ | 1782447412356317184 |
---|---|
author | Hsieh, Fushing Hsueh, Chih-Hsin Heitkamp, Constantin Matthews, Mark |
author_facet | Hsieh, Fushing Hsueh, Chih-Hsin Heitkamp, Constantin Matthews, Mark |
author_sort | Hsieh, Fushing |
collection | PubMed |
description | Multiple datasets of two consecutive vintages of replicated grape and wines from six different deficit irrigation regimes are characterized and compared. The process consists of four temporal-ordered signature phases: harvest field data, juice composition, wine composition before bottling and bottled wine. A new computing paradigm and an integrative inferential platform are developed for discovering phase-to-phase pattern geometries for such characterization and comparison purposes. Each phase is manifested by a distinct set of features, which are measurable upon phase-specific entities subject to the common set of irrigation regimes. Throughout the four phases, this compilation of data from irrigation regimes with subsamples is termed a space of media-nodes, on which measurements of phase-specific features were recoded. All of these collectively constitute a bipartite network of data, which is then normalized and binary coded. For these serial bipartite networks, we first quantify patterns that characterize individual phases by means of a new computing paradigm called “Data Mechanics”. This computational technique extracts a coupling geometry which captures and reveals interacting dependence among and between media-nodes and feature-nodes in forms of hierarchical block sub-matrices. As one of the principal discoveries, the holistic year-factor persistently surfaces as the most inferential factor in classifying all media-nodes throughout all phases. This could be deemed either surprising in its over-arching dominance or obvious based on popular belief. We formulate and test pattern-based hypotheses that confirm such fundamental patterns. We also attempt to elucidate the driving force underlying the phase-evolution in winemaking via a newly developed partial coupling geometry, which is designed to integrate two coupling geometries. Such partial coupling geometries are confirmed to bear causal and predictive implications. All pattern inferences are performed with respect to a profile of energy distributions sampled from network bootstrapping ensembles conforming to block-structures specified by corresponding hypotheses. |
format | Online Article Text |
id | pubmed-4980011 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49800112016-08-25 Integrative Inferences on Pattern Geometries of Grapes Grown under Water Stress and Their Resulting Wines Hsieh, Fushing Hsueh, Chih-Hsin Heitkamp, Constantin Matthews, Mark PLoS One Research Article Multiple datasets of two consecutive vintages of replicated grape and wines from six different deficit irrigation regimes are characterized and compared. The process consists of four temporal-ordered signature phases: harvest field data, juice composition, wine composition before bottling and bottled wine. A new computing paradigm and an integrative inferential platform are developed for discovering phase-to-phase pattern geometries for such characterization and comparison purposes. Each phase is manifested by a distinct set of features, which are measurable upon phase-specific entities subject to the common set of irrigation regimes. Throughout the four phases, this compilation of data from irrigation regimes with subsamples is termed a space of media-nodes, on which measurements of phase-specific features were recoded. All of these collectively constitute a bipartite network of data, which is then normalized and binary coded. For these serial bipartite networks, we first quantify patterns that characterize individual phases by means of a new computing paradigm called “Data Mechanics”. This computational technique extracts a coupling geometry which captures and reveals interacting dependence among and between media-nodes and feature-nodes in forms of hierarchical block sub-matrices. As one of the principal discoveries, the holistic year-factor persistently surfaces as the most inferential factor in classifying all media-nodes throughout all phases. This could be deemed either surprising in its over-arching dominance or obvious based on popular belief. We formulate and test pattern-based hypotheses that confirm such fundamental patterns. We also attempt to elucidate the driving force underlying the phase-evolution in winemaking via a newly developed partial coupling geometry, which is designed to integrate two coupling geometries. Such partial coupling geometries are confirmed to bear causal and predictive implications. All pattern inferences are performed with respect to a profile of energy distributions sampled from network bootstrapping ensembles conforming to block-structures specified by corresponding hypotheses. Public Library of Science 2016-08-10 /pmc/articles/PMC4980011/ /pubmed/27508416 http://dx.doi.org/10.1371/journal.pone.0160621 Text en © 2016 Hsieh et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hsieh, Fushing Hsueh, Chih-Hsin Heitkamp, Constantin Matthews, Mark Integrative Inferences on Pattern Geometries of Grapes Grown under Water Stress and Their Resulting Wines |
title | Integrative Inferences on Pattern Geometries of Grapes Grown under Water Stress and Their Resulting Wines |
title_full | Integrative Inferences on Pattern Geometries of Grapes Grown under Water Stress and Their Resulting Wines |
title_fullStr | Integrative Inferences on Pattern Geometries of Grapes Grown under Water Stress and Their Resulting Wines |
title_full_unstemmed | Integrative Inferences on Pattern Geometries of Grapes Grown under Water Stress and Their Resulting Wines |
title_short | Integrative Inferences on Pattern Geometries of Grapes Grown under Water Stress and Their Resulting Wines |
title_sort | integrative inferences on pattern geometries of grapes grown under water stress and their resulting wines |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980011/ https://www.ncbi.nlm.nih.gov/pubmed/27508416 http://dx.doi.org/10.1371/journal.pone.0160621 |
work_keys_str_mv | AT hsiehfushing integrativeinferencesonpatterngeometriesofgrapesgrownunderwaterstressandtheirresultingwines AT hsuehchihhsin integrativeinferencesonpatterngeometriesofgrapesgrownunderwaterstressandtheirresultingwines AT heitkampconstantin integrativeinferencesonpatterngeometriesofgrapesgrownunderwaterstressandtheirresultingwines AT matthewsmark integrativeinferencesonpatterngeometriesofgrapesgrownunderwaterstressandtheirresultingwines |