Cargando…

Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lase...

Descripción completa

Detalles Bibliográficos
Autores principales: McPolin, Cillian P. T., Bouillard, Jean-Sebastien, Vilain, Sebastien, Krasavin, Alexey V., Dickson, Wayne, O'Connor, Daniel, Wurtz, Gregory A., Justice, John, Corbett, Brian, Zayats, Anatoly V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980450/
https://www.ncbi.nlm.nih.gov/pubmed/27491686
http://dx.doi.org/10.1038/ncomms12409
Descripción
Sumario:Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices.