Cargando…
Pinch-off of microfluidic droplets with oscillatory velocity of inner phase flow
When one liquid is introduced into another immiscible one, it ultimately fragments due to hydrodynamic instability. In contrast to neck pinch-off without external actuation, the viscous two-fluid system subjected to an oscillatory flow demonstrates higher efficiency in breaking fluid threads. Howeve...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980598/ https://www.ncbi.nlm.nih.gov/pubmed/27511300 http://dx.doi.org/10.1038/srep31436 |
Sumario: | When one liquid is introduced into another immiscible one, it ultimately fragments due to hydrodynamic instability. In contrast to neck pinch-off without external actuation, the viscous two-fluid system subjected to an oscillatory flow demonstrates higher efficiency in breaking fluid threads. However, the underlying dynamics of this process is less well understood. Here we show that the neck-thinning rate is accelerated by the amplitude of oscillation. By simply evaluating the momentum transfer from external actuation, we derive a dimensionless pre-factor to quantify the accelerated pinch-off. Our data ascribes the acceleration to the non-negligible inner fluid inertia, which neutralizes the inner phase viscous stress that retards the pinch-off. Moreover, we characterize an equivalent neck-thinning behavior between an actuated system and its unactuated counterpart with decreased viscosity ratio. Finally, we demonstrate that oscillation is capable of modulating satellite droplet formation by shifting the pinch-off location. Our study would be useful for manipulating fluids at microscale by external forcing. |
---|