Cargando…

General Force-Field Parametrization Scheme for Molecular Dynamics Simulations of Conjugated Materials in Solution

[Image: see text] We describe a general scheme to obtain force-field parameters for classical molecular dynamics simulations of conjugated polymers. We identify a computationally inexpensive methodology for calculation of accurate intermonomer dihedral potentials and partial charges. Our findings in...

Descripción completa

Detalles Bibliográficos
Autores principales: Wildman, Jack, Repiščák, Peter, Paterson, Martin J., Galbraith, Ian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2016
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980687/
https://www.ncbi.nlm.nih.gov/pubmed/27397762
http://dx.doi.org/10.1021/acs.jctc.5b01195
_version_ 1782447497113763840
author Wildman, Jack
Repiščák, Peter
Paterson, Martin J.
Galbraith, Ian
author_facet Wildman, Jack
Repiščák, Peter
Paterson, Martin J.
Galbraith, Ian
author_sort Wildman, Jack
collection PubMed
description [Image: see text] We describe a general scheme to obtain force-field parameters for classical molecular dynamics simulations of conjugated polymers. We identify a computationally inexpensive methodology for calculation of accurate intermonomer dihedral potentials and partial charges. Our findings indicate that the use of a two-step methodology of geometry optimization and single-point energy calculations using DFT methods produces potentials which compare favorably to high level theory calculation. We also report the effects of varying the conjugated backbone length and alkyl side-chain lengths on the dihedral profiles and partial charge distributions and determine the existence of converged lengths above which convergence is achieved in the force-field parameter sets. We thus determine which calculations are required for accurate parametrization and the scope of a given parameter set for variations to a given molecule. We perform simulations of long oligomers of dioctylfluorene and hexylthiophene in explicit solvent and find peristence lengths and end-length distributions consistent with experimental values.
format Online
Article
Text
id pubmed-4980687
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-49806872016-08-17 General Force-Field Parametrization Scheme for Molecular Dynamics Simulations of Conjugated Materials in Solution Wildman, Jack Repiščák, Peter Paterson, Martin J. Galbraith, Ian J Chem Theory Comput [Image: see text] We describe a general scheme to obtain force-field parameters for classical molecular dynamics simulations of conjugated polymers. We identify a computationally inexpensive methodology for calculation of accurate intermonomer dihedral potentials and partial charges. Our findings indicate that the use of a two-step methodology of geometry optimization and single-point energy calculations using DFT methods produces potentials which compare favorably to high level theory calculation. We also report the effects of varying the conjugated backbone length and alkyl side-chain lengths on the dihedral profiles and partial charge distributions and determine the existence of converged lengths above which convergence is achieved in the force-field parameter sets. We thus determine which calculations are required for accurate parametrization and the scope of a given parameter set for variations to a given molecule. We perform simulations of long oligomers of dioctylfluorene and hexylthiophene in explicit solvent and find peristence lengths and end-length distributions consistent with experimental values. American Chemical Society 2016-07-10 2016-08-09 /pmc/articles/PMC4980687/ /pubmed/27397762 http://dx.doi.org/10.1021/acs.jctc.5b01195 Text en Copyright © 2016 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Wildman, Jack
Repiščák, Peter
Paterson, Martin J.
Galbraith, Ian
General Force-Field Parametrization Scheme for Molecular Dynamics Simulations of Conjugated Materials in Solution
title General Force-Field Parametrization Scheme for Molecular Dynamics Simulations of Conjugated Materials in Solution
title_full General Force-Field Parametrization Scheme for Molecular Dynamics Simulations of Conjugated Materials in Solution
title_fullStr General Force-Field Parametrization Scheme for Molecular Dynamics Simulations of Conjugated Materials in Solution
title_full_unstemmed General Force-Field Parametrization Scheme for Molecular Dynamics Simulations of Conjugated Materials in Solution
title_short General Force-Field Parametrization Scheme for Molecular Dynamics Simulations of Conjugated Materials in Solution
title_sort general force-field parametrization scheme for molecular dynamics simulations of conjugated materials in solution
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980687/
https://www.ncbi.nlm.nih.gov/pubmed/27397762
http://dx.doi.org/10.1021/acs.jctc.5b01195
work_keys_str_mv AT wildmanjack generalforcefieldparametrizationschemeformoleculardynamicssimulationsofconjugatedmaterialsinsolution
AT repiscakpeter generalforcefieldparametrizationschemeformoleculardynamicssimulationsofconjugatedmaterialsinsolution
AT patersonmartinj generalforcefieldparametrizationschemeformoleculardynamicssimulationsofconjugatedmaterialsinsolution
AT galbraithian generalforcefieldparametrizationschemeformoleculardynamicssimulationsofconjugatedmaterialsinsolution