Cargando…

Vigna subterranea ammonium transporter gene (VsAMT1): Some bioinformatics insights

Ammonium transporters (AMTs) play a role in the uptake of ammonium, the form in which nitrogen is preferentially absorbed by plants. Vigna subterranea (VsAMT1) and Solanum tuberosum (StAMT1) AMT1s were characterized using molecular biology and bioinformatics methods. AMT1-specific primers were desig...

Descripción completa

Detalles Bibliográficos
Autores principales: Adetunji, Adewole T., Lewu, Francis B., Mundembe, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980749/
https://www.ncbi.nlm.nih.gov/pubmed/28352577
http://dx.doi.org/10.1016/j.btre.2015.10.003
Descripción
Sumario:Ammonium transporters (AMTs) play a role in the uptake of ammonium, the form in which nitrogen is preferentially absorbed by plants. Vigna subterranea (VsAMT1) and Solanum tuberosum (StAMT1) AMT1s were characterized using molecular biology and bioinformatics methods. AMT1-specific primers were designed and used to amplify the AMT1 internal regions. Nucleotide sequencing, alignment and phylogenetic analysis assigned VsAMT1 and StAMT1 to the AMT1 family. The deduced amino acid sequences showed that VsAMT1 is 92% and 89% similar to Phaseolus vulgaris PvAMT1.1 and Glycine max AMT1 respectively, while StAMT1 is 92% similar to Solanum lycopersicum LeAMT1.1, and correspond to the 5th–10th trans-membrane domains. Residues VsAMT1 D23 and StAMT1 D15 are predicted to be essential for ammonium transport, while mutations of VsAMT1 W1A-L and S87A and StAMT1 S76A may further enhance ammonium transport. In addition to nitrogen uptake from the roots, VsAMT1 may also contribute to interactions with rhizobia.