Cargando…
Single and multi-subject clustering of flow cytometry data for cell-type identification and anomaly detection
BACKGROUND: Measurement of various markers of single cells using flow cytometry has several biological applications. These applications include improving our understanding of behavior of cellular systems, identifying rare cell populations and personalized medication. A common critical issue in the e...
Autores principales: | Pouyan, Maziyar Baran, Jindal, Vasu, Birjandtalab, Javad, Nourani, Mehrdad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980779/ https://www.ncbi.nlm.nih.gov/pubmed/27510222 http://dx.doi.org/10.1186/s12920-016-0201-x |
Ejemplares similares
-
Random forest based similarity learning for single cell RNA sequencing data
por: Pouyan, Maziyar Baran, et al.
Publicado: (2018) -
Ultrafast clustering of single-cell flow cytometry data using FlowGrid
por: Ye, Xiaoxin, et al.
Publicado: (2019) -
Development of On-Chip Multi-Imaging Flow Cytometry for Identification of Imaging Biomarkers of Clustered Circulating Tumor Cells
por: Kim, Hyonchol, et al.
Publicado: (2014) -
Intraoperative Flow Cytometry for Diagnosis of Central Nervous System Lesions
por: Jindal, Arpita
Publicado: (2019) -
Automated subset identification and characterization pipeline for multidimensional flow and mass cytometry data clustering and visualization
por: Meehan, Stephen, et al.
Publicado: (2019)