Cargando…
Integrative approach for inference of gene regulatory networks using lasso-based random featuring and application to psychiatric disorders
BACKGROUND: Inferring gene regulatory networks is one of the most interesting research areas in the systems biology. Many inference methods have been developed by using a variety of computational models and approaches. However, there are two issues to solve. First, depending on the structural or com...
Autores principales: | Kim, Dongchul, Kang, Mingon, Biswas, Ashis, Liu, Chunyu, Gao, Jean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980788/ https://www.ncbi.nlm.nih.gov/pubmed/27510319 http://dx.doi.org/10.1186/s12920-016-0202-9 |
Ejemplares similares
-
Stable solution to l(2,1)-based robust inductive matrix completion and its application in linking long noncoding RNAs to human diseases
por: Biswas, Ashis Kumer, et al.
Publicado: (2017) -
Hi-LASSO: High-performance python and apache spark packages for feature selection with high-dimensional data
por: Jo, Jongkwon, et al.
Publicado: (2022) -
Inference of radio-responsive gene regulatory networks using the graphical lasso algorithm
por: Oh, Jung Hun, et al.
Publicado: (2014) -
Gene regulatory network inference using fused LASSO on multiple data sets
por: Omranian, Nooshin, et al.
Publicado: (2016) -
Time-lagged Ordered Lasso for network inference
por: Nguyen, Phan, et al.
Publicado: (2018)