Cargando…
On a more accurate half-discrete Hardy–Hilbert-type inequality related to the kernel of arc tangent function
By means of weight functions and Hermite–Hadamard’s inequality, and introducing a discrete interval variable, a more accurate half-discrete Hardy–Hilbert-type inequality related to the kernel of arc tangent function and a best possible constant factor is given, which is an extension of a published r...
Autores principales: | Chen, Qiang, Yang, Bicheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980859/ https://www.ncbi.nlm.nih.gov/pubmed/27563512 http://dx.doi.org/10.1186/s40064-016-2901-2 |
Ejemplares similares
-
A more accurate half-discrete Hardy-Hilbert-type inequality with the logarithmic function
por: Wang, Aizhen, et al.
Publicado: (2017) -
On a more accurate Hardy-Mulholland-type inequality
por: Yang, Bicheng, et al.
Publicado: (2017) -
On Hilbert-type and Hardy-type integral inequalities and applications
por: Yang, Bicheng, et al.
Publicado: (2019) -
An extended reverse Hardy–Hilbert’s inequality in the whole plane
por: Chen, Qiang, et al.
Publicado: (2018) -
Discrete Hilbert-Type Inequalities
por: Yang, Bicheng
Publicado: (2011)