Cargando…
On an open question of V. Colao and G. Marino presented in the paper “Krasnoselskii–Mann method for non-self mappings”
Let H be a Hilbert space and let C be a closed convex nonempty subset of H and [Formula: see text] a non-self nonexpansive mapping. A map [Formula: see text] defined by [Formula: see text] . Then, for a fixed [Formula: see text] and for [Formula: see text] , Krasnoselskii–Mann algorithm is defined b...
Autores principales: | Guo, Meifang, Li, Xia, Su, Yongfu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980868/ https://www.ncbi.nlm.nih.gov/pubmed/27563523 http://dx.doi.org/10.1186/s40064-016-2977-8 |
Ejemplares similares
-
Krasnoselskii-type algorithm for zeros of strongly monotone Lipschitz maps in classical banach spaces
por: Chidume, C E, et al.
Publicado: (2015) -
Murray Gell-Mann: selected papers
por: Gell-Mann, Murray, et al.
Publicado: (2010) -
MARINO
por: MARINO BEIRAS, Marcos
Publicado: (2014) -
Rate Dependent Krasnoselskii-Pokrovskii Modeling and Inverse Compensation Control of Piezoceramic Actuated Stages
por: Li, Wenjun, et al.
Publicado: (2020) -
Adaptive Tracking Control for the Piezoelectric Actuated Stage Using the Krasnosel’skii-Pokrovskii Operator
por: Xu, Rui, et al.
Publicado: (2020)