Cargando…
Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets
The collective behavior of a large number of degrees of freedom can be often described by a handful of variables. This observation justifies the use of dimensionality reduction approaches to model complex systems and motivates the search for a small set of relevant “collective” variables. Here, we a...
Autores principales: | Granata, Daniele, Carnevale, Vincenzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980871/ https://www.ncbi.nlm.nih.gov/pubmed/27510265 http://dx.doi.org/10.1038/srep31377 |
Ejemplares similares
-
Estimating the intrinsic dimension of datasets by a minimal neighborhood information
por: Facco, Elena, et al.
Publicado: (2017) -
Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph
por: Albergante, Luca, et al.
Publicado: (2020) -
The generalized ratios intrinsic dimension estimator
por: Denti, Francesco, et al.
Publicado: (2022) -
Graph distance for complex networks
por: Shimada, Yutaka, et al.
Publicado: (2016) -
Scikit-Dimension: A Python Package for Intrinsic Dimension Estimation
por: Bac, Jonathan, et al.
Publicado: (2021)