Cargando…

Growth in stratospheric chlorine from short‐lived chemicals not controlled by the Montreal Protocol

We have developed a chemical mechanism describing the tropospheric degradation of chlorine containing very short‐lived substances (VSLS). The scheme was included in a global atmospheric model and used to quantify the stratospheric injection of chlorine from anthropogenic VSLS ( [Formula: see text])...

Descripción completa

Detalles Bibliográficos
Autores principales: Hossaini, R., Chipperfield, M. P., Saiz‐Lopez, A., Harrison, J. J., von Glasow, R., Sommariva, R., Atlas, E., Navarro, M., Montzka, S. A., Feng, W., Dhomse, S., Harth, C., Mühle, J., Lunder, C., O'Doherty, S., Young, D., Reimann, S., Vollmer, M. K., Krummel, P. B., Bernath, P. F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981078/
https://www.ncbi.nlm.nih.gov/pubmed/27570318
http://dx.doi.org/10.1002/2015GL063783
_version_ 1782447566704607232
author Hossaini, R.
Chipperfield, M. P.
Saiz‐Lopez, A.
Harrison, J. J.
von Glasow, R.
Sommariva, R.
Atlas, E.
Navarro, M.
Montzka, S. A.
Feng, W.
Dhomse, S.
Harth, C.
Mühle, J.
Lunder, C.
O'Doherty, S.
Young, D.
Reimann, S.
Vollmer, M. K.
Krummel, P. B.
Bernath, P. F.
author_facet Hossaini, R.
Chipperfield, M. P.
Saiz‐Lopez, A.
Harrison, J. J.
von Glasow, R.
Sommariva, R.
Atlas, E.
Navarro, M.
Montzka, S. A.
Feng, W.
Dhomse, S.
Harth, C.
Mühle, J.
Lunder, C.
O'Doherty, S.
Young, D.
Reimann, S.
Vollmer, M. K.
Krummel, P. B.
Bernath, P. F.
author_sort Hossaini, R.
collection PubMed
description We have developed a chemical mechanism describing the tropospheric degradation of chlorine containing very short‐lived substances (VSLS). The scheme was included in a global atmospheric model and used to quantify the stratospheric injection of chlorine from anthropogenic VSLS ( [Formula: see text]) between 2005 and 2013. By constraining the model with surface measurements of chloroform (CHCl(3)), dichloromethane (CH(2)Cl(2)), tetrachloroethene (C(2)Cl(4)), trichloroethene (C(2)HCl(3)), and 1,2‐dichloroethane (CH(2)ClCH(2)Cl), we infer a 2013 [Formula: see text] mixing ratio of 123 parts per trillion (ppt). Stratospheric injection of source gases dominates this supply, accounting for ∼83% of the total. The remainder comes from VSLS‐derived organic products, phosgene (COCl(2), 7%) and formyl chloride (CHClO, 2%), and also hydrogen chloride (HCl, 8%). Stratospheric [Formula: see text] increased by ∼52% between 2005 and 2013, with a mean growth rate of 3.7 ppt Cl/yr. This increase is due to recent and ongoing growth in anthropogenic CH(2)Cl(2)—the most abundant chlorinated VSLS not controlled by the Montreal Protocol.
format Online
Article
Text
id pubmed-4981078
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-49810782016-08-24 Growth in stratospheric chlorine from short‐lived chemicals not controlled by the Montreal Protocol Hossaini, R. Chipperfield, M. P. Saiz‐Lopez, A. Harrison, J. J. von Glasow, R. Sommariva, R. Atlas, E. Navarro, M. Montzka, S. A. Feng, W. Dhomse, S. Harth, C. Mühle, J. Lunder, C. O'Doherty, S. Young, D. Reimann, S. Vollmer, M. K. Krummel, P. B. Bernath, P. F. Geophys Res Lett Research Letters We have developed a chemical mechanism describing the tropospheric degradation of chlorine containing very short‐lived substances (VSLS). The scheme was included in a global atmospheric model and used to quantify the stratospheric injection of chlorine from anthropogenic VSLS ( [Formula: see text]) between 2005 and 2013. By constraining the model with surface measurements of chloroform (CHCl(3)), dichloromethane (CH(2)Cl(2)), tetrachloroethene (C(2)Cl(4)), trichloroethene (C(2)HCl(3)), and 1,2‐dichloroethane (CH(2)ClCH(2)Cl), we infer a 2013 [Formula: see text] mixing ratio of 123 parts per trillion (ppt). Stratospheric injection of source gases dominates this supply, accounting for ∼83% of the total. The remainder comes from VSLS‐derived organic products, phosgene (COCl(2), 7%) and formyl chloride (CHClO, 2%), and also hydrogen chloride (HCl, 8%). Stratospheric [Formula: see text] increased by ∼52% between 2005 and 2013, with a mean growth rate of 3.7 ppt Cl/yr. This increase is due to recent and ongoing growth in anthropogenic CH(2)Cl(2)—the most abundant chlorinated VSLS not controlled by the Montreal Protocol. John Wiley and Sons Inc. 2015-06-16 2015-06-01 /pmc/articles/PMC4981078/ /pubmed/27570318 http://dx.doi.org/10.1002/2015GL063783 Text en ©2015. The Authors. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Letters
Hossaini, R.
Chipperfield, M. P.
Saiz‐Lopez, A.
Harrison, J. J.
von Glasow, R.
Sommariva, R.
Atlas, E.
Navarro, M.
Montzka, S. A.
Feng, W.
Dhomse, S.
Harth, C.
Mühle, J.
Lunder, C.
O'Doherty, S.
Young, D.
Reimann, S.
Vollmer, M. K.
Krummel, P. B.
Bernath, P. F.
Growth in stratospheric chlorine from short‐lived chemicals not controlled by the Montreal Protocol
title Growth in stratospheric chlorine from short‐lived chemicals not controlled by the Montreal Protocol
title_full Growth in stratospheric chlorine from short‐lived chemicals not controlled by the Montreal Protocol
title_fullStr Growth in stratospheric chlorine from short‐lived chemicals not controlled by the Montreal Protocol
title_full_unstemmed Growth in stratospheric chlorine from short‐lived chemicals not controlled by the Montreal Protocol
title_short Growth in stratospheric chlorine from short‐lived chemicals not controlled by the Montreal Protocol
title_sort growth in stratospheric chlorine from short‐lived chemicals not controlled by the montreal protocol
topic Research Letters
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981078/
https://www.ncbi.nlm.nih.gov/pubmed/27570318
http://dx.doi.org/10.1002/2015GL063783
work_keys_str_mv AT hossainir growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT chipperfieldmp growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT saizlopeza growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT harrisonjj growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT vonglasowr growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT sommarivar growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT atlase growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT navarrom growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT montzkasa growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT fengw growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT dhomses growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT harthc growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT muhlej growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT lunderc growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT odohertys growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT youngd growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT reimanns growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT vollmermk growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT krummelpb growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol
AT bernathpf growthinstratosphericchlorinefromshortlivedchemicalsnotcontrolledbythemontrealprotocol