Cargando…

On the wave length of smooth periodic traveling waves of the Camassa–Holm equation()

This paper is concerned with the wave length λ of smooth periodic traveling wave solutions of the Camassa–Holm equation. The set of these solutions can be parametrized using the wave height a (or “peak-to-peak amplitude”). Our main result establishes monotonicity properties of the map [Formula: see...

Descripción completa

Detalles Bibliográficos
Autores principales: Geyer, A., Villadelprat, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981178/
https://www.ncbi.nlm.nih.gov/pubmed/27546904
http://dx.doi.org/10.1016/j.jde.2015.03.027
Descripción
Sumario:This paper is concerned with the wave length λ of smooth periodic traveling wave solutions of the Camassa–Holm equation. The set of these solutions can be parametrized using the wave height a (or “peak-to-peak amplitude”). Our main result establishes monotonicity properties of the map [Formula: see text] , i.e., the wave length as a function of the wave height. We obtain the explicit bifurcation values, in terms of the parameters associated with the equation, which distinguish between the two possible qualitative behaviors of [Formula: see text] , namely monotonicity and unimodality. The key point is to relate [Formula: see text] to the period function of a planar differential system with a quadratic-like first integral, and to apply a criterion which bounds the number of critical periods for this type of systems.