Cargando…
On the wave length of smooth periodic traveling waves of the Camassa–Holm equation()
This paper is concerned with the wave length λ of smooth periodic traveling wave solutions of the Camassa–Holm equation. The set of these solutions can be parametrized using the wave height a (or “peak-to-peak amplitude”). Our main result establishes monotonicity properties of the map [Formula: see...
Autores principales: | Geyer, A., Villadelprat, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981178/ https://www.ncbi.nlm.nih.gov/pubmed/27546904 http://dx.doi.org/10.1016/j.jde.2015.03.027 |
Ejemplares similares
-
The Marchenko-Ostrovski mapping and the trace formula for the Camassa-Holm equation
por: Badanin, A, et al.
Publicado: (2002) -
Spectral stability of periodic waves in the generalized reduced Ostrovsky equation
por: Geyer, Anna, et al.
Publicado: (2017) -
Nonlinear dispersive equations: existence and stability of solitary and periodic travelling wave solutions
por: Pava, Jaime Angulo
Publicado: (2014) -
Nonlinear interaction of traveling waves for nonlinear equations
por: Fokas, A S, et al.
Publicado: (1993) -
Convergence of solutions of the Kolmogorov equation of travelling waves
por: Bramson, Maury
Publicado: (2005)