Cargando…
Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms
Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm...
Autores principales: | Jian, Jhih-Wei, Elumalai, Pavadai, Pitti, Thejkiran, Wu, Chih Yuan, Tsai, Keng-Chang, Chang, Jeng-Yih, Peng, Hung-Pin, Yang, An-Suei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981321/ https://www.ncbi.nlm.nih.gov/pubmed/27513851 http://dx.doi.org/10.1371/journal.pone.0160315 |
Ejemplares similares
-
Prediction of Carbohydrate Binding Sites on Protein Surfaces with 3-Dimensional Probability Density Distributions of Interacting Atoms
por: Tsai, Keng-Chang, et al.
Publicado: (2012) -
Protein-Protein Interaction Site Predictions with Three-Dimensional Probability Distributions of Interacting Atoms on Protein Surfaces
por: Chen, Ching-Tai, et al.
Publicado: (2012) -
Molecular Evolution of the Neuropeptide S Receptor
por: Pitti, Thejkiran, et al.
Publicado: (2012) -
Rationalization and Design of the Complementarity Determining Region Sequences in an Antibody-Antigen Recognition Interface
por: Yu, Chung-Ming, et al.
Publicado: (2012) -
N-GlyDE: a two-stage N-linked glycosylation site prediction incorporating gapped dipeptides and pattern-based encoding
por: Pitti, Thejkiran, et al.
Publicado: (2019)