Cargando…
Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants
SUMMARY: A finite element modelling pipeline was adopted to predict femur strength in a retrospective cohort of 100 women. The effects of the imaging protocol and the meshing technique on the ability of the femur strength to classify the fracture and the control groups were analysed. INTRODUCTION: T...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981620/ https://www.ncbi.nlm.nih.gov/pubmed/27108118 http://dx.doi.org/10.1007/s00198-016-3597-4 |
_version_ | 1782447636591149056 |
---|---|
author | Qasim, M. Farinella, G. Zhang, J. Li, X. Yang, L. Eastell, R. Viceconti, M. |
author_facet | Qasim, M. Farinella, G. Zhang, J. Li, X. Yang, L. Eastell, R. Viceconti, M. |
author_sort | Qasim, M. |
collection | PubMed |
description | SUMMARY: A finite element modelling pipeline was adopted to predict femur strength in a retrospective cohort of 100 women. The effects of the imaging protocol and the meshing technique on the ability of the femur strength to classify the fracture and the control groups were analysed. INTRODUCTION: The clinical standard to estimate the risk of osteoporotic hip fracture is based on the areal bone mineral density (aBMD). A few retrospective studies have concluded that finite element (FE)-based femoral strength is a better classifier of fracture and control groups than the aBMD, while others could not find significant differences. We investigated the effect of the imaging protocol and of the FE modelling techniques on the discriminatory power of femoral strength. METHODS: A retrospective cohort of 100 post-menopausal women (50 with hip fracture, 50 controls) was examined. Each subject received a dual-energy absorptiometry (DXA) exam and a computed tomography (CT) scan of the proximal femur region. Each case was modelled a number of times, using different modelling pipelines, and the results were compared in terms of accuracy in discriminating the fracture and the control cases. The baseline pipeline involved local anatomical orientation and mesh morphing. Revised pipelines involved global anatomical orientation using a full-femur atlas registration and an optimised meshing algorithm. Minimum physiological (MPhyS) and pathological (MPatS) strengths were estimated for each subject. Area under the receiver operating characteristic (ROC) curve (AUC) was calculated to compare the ability of MPhyS, MPatS and aBMD to classify the control and the cases. RESULTS: Differences in the modelling protocol were found to considerably affect the accuracy of the FE predictors. For the most optimised protocol, logistic regression showed aBMD(Neck), MPhyS and MPatS to be significantly associated with the facture status, with AUC of 0.75, 0.75 and 0.79, respectively. CONCLUSION: The study emphasized the necessity of modelling the whole femur anatomy to develop a robust FE-based tool for hip fracture risk assessment. FE-strength performed only slightly better than the aBMD in discriminating the fracture and control cases. Differences between the published studies can be explained in terms of differences in the modelling protocol and cohort design. |
format | Online Article Text |
id | pubmed-4981620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer London |
record_format | MEDLINE/PubMed |
spelling | pubmed-49816202016-08-23 Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants Qasim, M. Farinella, G. Zhang, J. Li, X. Yang, L. Eastell, R. Viceconti, M. Osteoporos Int Original Article SUMMARY: A finite element modelling pipeline was adopted to predict femur strength in a retrospective cohort of 100 women. The effects of the imaging protocol and the meshing technique on the ability of the femur strength to classify the fracture and the control groups were analysed. INTRODUCTION: The clinical standard to estimate the risk of osteoporotic hip fracture is based on the areal bone mineral density (aBMD). A few retrospective studies have concluded that finite element (FE)-based femoral strength is a better classifier of fracture and control groups than the aBMD, while others could not find significant differences. We investigated the effect of the imaging protocol and of the FE modelling techniques on the discriminatory power of femoral strength. METHODS: A retrospective cohort of 100 post-menopausal women (50 with hip fracture, 50 controls) was examined. Each subject received a dual-energy absorptiometry (DXA) exam and a computed tomography (CT) scan of the proximal femur region. Each case was modelled a number of times, using different modelling pipelines, and the results were compared in terms of accuracy in discriminating the fracture and the control cases. The baseline pipeline involved local anatomical orientation and mesh morphing. Revised pipelines involved global anatomical orientation using a full-femur atlas registration and an optimised meshing algorithm. Minimum physiological (MPhyS) and pathological (MPatS) strengths were estimated for each subject. Area under the receiver operating characteristic (ROC) curve (AUC) was calculated to compare the ability of MPhyS, MPatS and aBMD to classify the control and the cases. RESULTS: Differences in the modelling protocol were found to considerably affect the accuracy of the FE predictors. For the most optimised protocol, logistic regression showed aBMD(Neck), MPhyS and MPatS to be significantly associated with the facture status, with AUC of 0.75, 0.75 and 0.79, respectively. CONCLUSION: The study emphasized the necessity of modelling the whole femur anatomy to develop a robust FE-based tool for hip fracture risk assessment. FE-strength performed only slightly better than the aBMD in discriminating the fracture and control cases. Differences between the published studies can be explained in terms of differences in the modelling protocol and cohort design. Springer London 2016-04-23 2016 /pmc/articles/PMC4981620/ /pubmed/27108118 http://dx.doi.org/10.1007/s00198-016-3597-4 Text en © The Author(s) 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as appropriate credit is given to the original author(s) and the source, a link is provided to the Creative Commons license and any changes made are indicated. |
spellingShingle | Original Article Qasim, M. Farinella, G. Zhang, J. Li, X. Yang, L. Eastell, R. Viceconti, M. Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants |
title | Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants |
title_full | Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants |
title_fullStr | Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants |
title_full_unstemmed | Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants |
title_short | Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants |
title_sort | patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981620/ https://www.ncbi.nlm.nih.gov/pubmed/27108118 http://dx.doi.org/10.1007/s00198-016-3597-4 |
work_keys_str_mv | AT qasimm patientspecificfiniteelementestimatedfemurstrengthasapredictoroftheriskofhipfracturetheeffectofmethodologicaldeterminants AT farinellag patientspecificfiniteelementestimatedfemurstrengthasapredictoroftheriskofhipfracturetheeffectofmethodologicaldeterminants AT zhangj patientspecificfiniteelementestimatedfemurstrengthasapredictoroftheriskofhipfracturetheeffectofmethodologicaldeterminants AT lix patientspecificfiniteelementestimatedfemurstrengthasapredictoroftheriskofhipfracturetheeffectofmethodologicaldeterminants AT yangl patientspecificfiniteelementestimatedfemurstrengthasapredictoroftheriskofhipfracturetheeffectofmethodologicaldeterminants AT eastellr patientspecificfiniteelementestimatedfemurstrengthasapredictoroftheriskofhipfracturetheeffectofmethodologicaldeterminants AT vicecontim patientspecificfiniteelementestimatedfemurstrengthasapredictoroftheriskofhipfracturetheeffectofmethodologicaldeterminants |