Cargando…

The effect of chronic exposure to high palmitic acid concentrations on the aerobic metabolism of human endothelial EA.hy926 cells

A chronic elevation of circulating free fatty acids (FFAs) is associated with diseases like obesity or diabetes and can lead to lipotoxicity. The goals of this study were to assess the influence of chronic exposure to high palmitic acid (PAL) levels on mitochondrial respiratory functions in endothel...

Descripción completa

Detalles Bibliográficos
Autores principales: Broniarek, Izabela, Koziel, Agnieszka, Jarmuszkiewicz, Wieslawa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981632/
https://www.ncbi.nlm.nih.gov/pubmed/27417103
http://dx.doi.org/10.1007/s00424-016-1856-z
Descripción
Sumario:A chronic elevation of circulating free fatty acids (FFAs) is associated with diseases like obesity or diabetes and can lead to lipotoxicity. The goals of this study were to assess the influence of chronic exposure to high palmitic acid (PAL) levels on mitochondrial respiratory functions in endothelial cells and isolated mitochondria. Human umbilical vein endothelial cells (EA.hy926 line) were grown for 6 days in a medium containing either 100 or 150 μM PAL. Growth at high PAL concentrations induced a considerable increase in fatty acid-supplied respiration and a reduction of mitochondrial respiration during carbohydrate and glutamine oxidation. High PAL levels elevated intracellular and mitochondrial superoxide generation; increased inflammation marker, acyl-coenzyme A (CoA) dehydrogenase, uncoupling protein 2 (UCP2), and superoxide dismutase 2 expression; and decreased hexokinase I and pyruvate dehydrogenase expression. No change in aerobic respiration capacity was observed, while fermentation was decreased. In mitochondria isolated from high PAL-treated cells, an increase in the oxidation of palmitoylcarnitine, a decrease in the oxidation of pyruvate, and an increase in UCP2 activity were observed. Our results demonstrate that exposure to high PAL levels induces a shift in endothelial aerobic metabolism toward the oxidation of fatty acids. Increased levels of PAL caused impairment and uncoupling of the mitochondrial oxidative phosphorylation system. Our data indicate that FFAs significantly affect endothelial oxidative metabolism, reactive oxygen species (ROS) formation, and cell viability and, thus, might contribute to endothelial and vascular dysfunction.