Cargando…
Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts
OBJECTIVE: The abundance of text available in social media and health related forums along with the rich expression of public opinion have recently attracted the interest of the public health community to use these sources for pharmacovigilance. Based on the intuition that patients post about Advers...
Autores principales: | Korkontzelos, Ioannis, Nikfarjam, Azadeh, Shardlow, Matthew, Sarker, Abeed, Ananiadou, Sophia, Gonzalez, Graciela H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981644/ https://www.ncbi.nlm.nih.gov/pubmed/27363901 http://dx.doi.org/10.1016/j.jbi.2016.06.007 |
Ejemplares similares
-
Comment on: “Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts”
por: Magge, Arjun, et al.
Publicado: (2019) -
Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features
por: Nikfarjam, Azadeh, et al.
Publicado: (2015) -
A BERT Framework to Sentiment Analysis of Tweets
por: Bello, Abayomi, et al.
Publicado: (2023) -
Online Influence and Sentiment of Fitness Tweets: Analysis of Two Million Fitness Tweets
por: Vickey, Theodore, et al.
Publicado: (2017) -
ASCOT: a text mining-based web-service for efficient search and assisted creation of clinical trials
por: Korkontzelos, Ioannis, et al.
Publicado: (2012)