Cargando…
A Dominant Social Comparison Heuristic Unites Alternative Mechanisms for the Evolution of Indirect Reciprocity
Cooperation is a fundamental human trait but our understanding of how it functions remains incomplete. Indirect reciprocity is a particular case in point, where one-shot donations are made to unrelated beneficiaries without any guarantee of payback. Existing insights are largely from two independent...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981842/ https://www.ncbi.nlm.nih.gov/pubmed/27515119 http://dx.doi.org/10.1038/srep31459 |
Sumario: | Cooperation is a fundamental human trait but our understanding of how it functions remains incomplete. Indirect reciprocity is a particular case in point, where one-shot donations are made to unrelated beneficiaries without any guarantee of payback. Existing insights are largely from two independent perspectives: i) individual-level cognitive behaviour in decision making, and ii) identification of conditions that favour evolution of cooperation. We identify a fundamental connection between these two areas by examining social comparison as a means through which indirect reciprocity can evolve. Social comparison is well established as an inherent human disposition through which humans navigate the social world by self-referential evaluation of others. Donating to those that are at least as reputable as oneself emerges as a dominant heuristic, which represents aspirational homophily. This heuristic is found to be implicitly present in the current knowledge of conditions that favour indirect reciprocity. The effective social norms for updating reputation are also observed to support this heuristic. We hypothesise that the cognitive challenge associated with social comparison has contributed to cerebral expansion and the disproportionate human brain size, consistent with the social complexity hypothesis. The findings have relevance for the evolution of autonomous systems that are characterised by one-shot interactions. |
---|