Cargando…

High levels of cyclic‐di‐GMP in plant‐associated P seudomonas correlate with evasion of plant immunity

The plant innate immune system employs plasma membrane‐localized receptors that specifically perceive pathogen/microbe‐associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern‐triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed...

Descripción completa

Detalles Bibliográficos
Autores principales: Pfeilmeier, Sebastian, Saur, Isabel Marie‐Luise, Rathjen, John Paul, Zipfel, Cyril, Malone, Jacob George
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982027/
https://www.ncbi.nlm.nih.gov/pubmed/26202381
http://dx.doi.org/10.1111/mpp.12297
Descripción
Sumario:The plant innate immune system employs plasma membrane‐localized receptors that specifically perceive pathogen/microbe‐associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern‐triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant‐associated bacteria. Here, we show that cyclic‐di‐GMP [bis‐(3′‐5′)‐cyclic di‐guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic‐di‐GMP levels in the pathogen P seudomonas syringae pv. tomato (P to) DC3000, the opportunist P . aeruginosa  PAO1 and the commensal P . protegens  Pf‐5 inhibit flagellin synthesis and help the bacteria to evade FLS2‐mediated signalling in N icotiana benthamiana and A rabidopsis thaliana. Despite this, high cellular cyclic‐di‐GMP concentrations were shown to drastically reduce the virulence of P to  DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic‐di‐GMP signalling on bacterial behaviour.