Cargando…
Review and evaluation of penalised regression methods for risk prediction in low‐dimensional data with few events
Risk prediction models are used to predict a clinical outcome for patients using a set of predictors. We focus on predicting low‐dimensional binary outcomes typically arising in epidemiology, health services and public health research where logistic regression is commonly used. When the number of ev...
Autores principales: | Pavlou, Menelaos, Ambler, Gareth, Seaman, Shaun, De Iorio, Maria, Omar, Rumana Z |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982098/ https://www.ncbi.nlm.nih.gov/pubmed/26514699 http://dx.doi.org/10.1002/sim.6782 |
Ejemplares similares
-
How to develop a more accurate risk prediction model when there are few events
por: Pavlou, Menelaos, et al.
Publicado: (2015) -
A note on obtaining correct marginal predictions from a random intercepts model for binary outcomes
por: Pavlou, Menelaos, et al.
Publicado: (2015) -
Review of methods for handling confounding by cluster and informative cluster size in clustered data
por: Seaman, Shaun, et al.
Publicado: (2014) -
Risk prediction in multicentre studies when there is confounding by cluster or informative cluster size
por: Pavlou, Menelaos, et al.
Publicado: (2021) -
Estimation of required sample size for external validation of risk
models for binary outcomes
por: Pavlou, Menelaos, et al.
Publicado: (2021)