Cargando…
Robust sparse canonical correlation analysis
BACKGROUND: Canonical correlation analysis (CCA) is a multivariate statistical method which describes the associations between two sets of variables. The objective is to find linear combinations of the variables in each data set having maximal correlation. In genomics, CCA has become increasingly im...
Autores principales: | Wilms, Ines, Croux, Christophe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982144/ https://www.ncbi.nlm.nih.gov/pubmed/27516087 http://dx.doi.org/10.1186/s12918-016-0317-9 |
Ejemplares similares
-
Group sparse canonical correlation analysis for genomic data integration
por: Lin, Dongdong, et al.
Publicado: (2013) -
Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks
por: Waaijenborg, Sandra, et al.
Publicado: (2009) -
Sparse kernel canonical correlation analysis for discovery of nonlinear interactions in high-dimensional data
por: Yoshida, Kosuke, et al.
Publicado: (2017) -
Identification of multimodal brain imaging association via a parameter decomposition based sparse multi-view canonical correlation analysis method
por: Zhang, Jin, et al.
Publicado: (2022) -
Cluster analysis of replicated alternative polyadenylation data using canonical correlation analysis
por: Ye, Wenbin, et al.
Publicado: (2019)