Cargando…
Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells
Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Leukocyte Biology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982610/ https://www.ncbi.nlm.nih.gov/pubmed/26928306 http://dx.doi.org/10.1189/jlb.5A1215-580R |
_version_ | 1782447804534226944 |
---|---|
author | Payne, Kyle K. Keim, Rebecca C. Graham, Laura Idowu, Michael O. Wan, Wen Wang, Xiang-Yang Toor, Amir A. Bear, Harry D. Manjili, Masoud H. |
author_facet | Payne, Kyle K. Keim, Rebecca C. Graham, Laura Idowu, Michael O. Wan, Wen Wang, Xiang-Yang Toor, Amir A. Bear, Harry D. Manjili, Masoud H. |
author_sort | Payne, Kyle K. |
collection | PubMed |
description | Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and adoptive immunotherapy, containing tumor-sensitized T cells and CD25(+) NKT cells. Decitabine functioned to induce the expression of highly immunogenic cancer testis antigens in the tumor, while also reducing the frequency of myeloid-derived suppressor cells and the presence of CD25(+) NKT cells rendered T cells, resistant to remaining myeloid-derived suppressor cells. This combinatorial therapy significantly prolonged survival of animals bearing metastatic tumor cells. Adoptive immunotherapy also induced tumor immunoediting, resulting in tumor escape and associated disease-related mortality. To identify a tumor target that is incapable of escape from the immune response, we used dormant tumor cells. We used Adriamycin chemotherapy or radiation therapy, which simultaneously induce tumor cell death and tumor dormancy. Resultant dormant cells became refractory to additional doses of Adriamycin or radiation therapy, but they remained sensitive to tumor-reactive immune cells. Importantly, we discovered that dormant tumor cells contained indolent cells that expressed low levels of Ki67 and quiescent cells that were Ki67 negative. Whereas the former were prone to tumor immunoediting and escape, the latter did not demonstrate immunoediting. Our results suggest that immunotherapy could be highly effective against quiescent dormant tumor cells. The challenge is to develop combinatorial therapies that could establish a quiescent type of tumor dormancy, which would be the best target for immunotherapy. |
format | Online Article Text |
id | pubmed-4982610 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Society for Leukocyte Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-49826102016-09-28 Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells Payne, Kyle K. Keim, Rebecca C. Graham, Laura Idowu, Michael O. Wan, Wen Wang, Xiang-Yang Toor, Amir A. Bear, Harry D. Manjili, Masoud H. J Leukoc Biol Translational & Clinical Immunology Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and adoptive immunotherapy, containing tumor-sensitized T cells and CD25(+) NKT cells. Decitabine functioned to induce the expression of highly immunogenic cancer testis antigens in the tumor, while also reducing the frequency of myeloid-derived suppressor cells and the presence of CD25(+) NKT cells rendered T cells, resistant to remaining myeloid-derived suppressor cells. This combinatorial therapy significantly prolonged survival of animals bearing metastatic tumor cells. Adoptive immunotherapy also induced tumor immunoediting, resulting in tumor escape and associated disease-related mortality. To identify a tumor target that is incapable of escape from the immune response, we used dormant tumor cells. We used Adriamycin chemotherapy or radiation therapy, which simultaneously induce tumor cell death and tumor dormancy. Resultant dormant cells became refractory to additional doses of Adriamycin or radiation therapy, but they remained sensitive to tumor-reactive immune cells. Importantly, we discovered that dormant tumor cells contained indolent cells that expressed low levels of Ki67 and quiescent cells that were Ki67 negative. Whereas the former were prone to tumor immunoediting and escape, the latter did not demonstrate immunoediting. Our results suggest that immunotherapy could be highly effective against quiescent dormant tumor cells. The challenge is to develop combinatorial therapies that could establish a quiescent type of tumor dormancy, which would be the best target for immunotherapy. Society for Leukocyte Biology 2016-09 2016-02-29 /pmc/articles/PMC4982610/ /pubmed/26928306 http://dx.doi.org/10.1189/jlb.5A1215-580R Text en © The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Translational & Clinical Immunology Payne, Kyle K. Keim, Rebecca C. Graham, Laura Idowu, Michael O. Wan, Wen Wang, Xiang-Yang Toor, Amir A. Bear, Harry D. Manjili, Masoud H. Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells |
title | Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells |
title_full | Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells |
title_fullStr | Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells |
title_full_unstemmed | Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells |
title_short | Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells |
title_sort | tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells |
topic | Translational & Clinical Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982610/ https://www.ncbi.nlm.nih.gov/pubmed/26928306 http://dx.doi.org/10.1189/jlb.5A1215-580R |
work_keys_str_mv | AT paynekylek tumorreactiveimmunecellsprotectagainstmetastatictumorandinduceimmunoeditingofindolentbutnotquiescenttumorcells AT keimrebeccac tumorreactiveimmunecellsprotectagainstmetastatictumorandinduceimmunoeditingofindolentbutnotquiescenttumorcells AT grahamlaura tumorreactiveimmunecellsprotectagainstmetastatictumorandinduceimmunoeditingofindolentbutnotquiescenttumorcells AT idowumichaelo tumorreactiveimmunecellsprotectagainstmetastatictumorandinduceimmunoeditingofindolentbutnotquiescenttumorcells AT wanwen tumorreactiveimmunecellsprotectagainstmetastatictumorandinduceimmunoeditingofindolentbutnotquiescenttumorcells AT wangxiangyang tumorreactiveimmunecellsprotectagainstmetastatictumorandinduceimmunoeditingofindolentbutnotquiescenttumorcells AT tooramira tumorreactiveimmunecellsprotectagainstmetastatictumorandinduceimmunoeditingofindolentbutnotquiescenttumorcells AT bearharryd tumorreactiveimmunecellsprotectagainstmetastatictumorandinduceimmunoeditingofindolentbutnotquiescenttumorcells AT manjilimasoudh tumorreactiveimmunecellsprotectagainstmetastatictumorandinduceimmunoeditingofindolentbutnotquiescenttumorcells |